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SUMMARY 
 
 
 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in 

developed nations, and heart disease is predicted to remain the leading killer for the 

foreseeable future. Acute myocardial infarctions (MI)—1.2 million annually occurring in 

the U.S. alone—are the major CVD subgroup. Blood supply to the heart is occluded 

during MI, and the ensuing hypoxic and anemic hypoxia triggers deleterious responses 

within the affected tissue, affecting cardiomyocyte (CM) and endothelial cell function and 

viability. Largely non-regenerative, the pressure overload leads to non-contractile scar 

formation and the infarcted heart undergoes a degenerative process toward heart failure. 

Beyond immediate treatments to restore coronary blood flow, the medical community 

lacks therapeutic strategies to effectively intervene in the long-term progression of 

cardiac dysfunction. 

The first section of this thesis examines two synthetic drug delivery vehicles to 

mitigate myocyte cell death and enhance vasculogenesis. The second part focuses on 

amplifying endogenous cardiac signals to treat the heart, and elucidating clues from said 

signals for bio-inspired therapeutics. 

Although many drugs exist that may aid ischemic myocytes, intracellular delivery 

of such drugs remains a hurdle, owing to the non-phogocytic nature of myocytes. Here, 

we describe a novel drug delivery system that relies on surface decoration with N-

acetylglucosamine (GlcNAc) to induce internalization. We tested the ligand with an acid-

degradable polymeric nanoparticle poly(cyclohexane-1,4-diyl acetone dimethylene ketal)  

(PCADK) encapsulating an anti-apoptotic small molecule, SB239063. The vehicle 

mitigated the effects of MI in a rat model: it reduced cell death in vivo and improved 

cardiac function. We also developed a dendrimeric delivery vehicle that exhibited region-

selective decoration with the internalizing tripeptide arginine-glycine-aspartic acid (RGD) 
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and loaded it with the angiogenic microRNA, miR-126. This vehicle promoted 

vasculogenesis in vitro and may prove useful in enhancing blood flow within the infarcted 

cardiac zone. 

A small population of stem cells resides in the heart, termed cardiac progenitor 

cells (CPCs). We collected the exosomes secreted in various conditions and treated 

cardiac endothelial and fibroblast cell lines with concentrated doses of the exosomes. 

The hypoxic exosomes enhanced tube formation of endothelial cells and attenuated 

cytokine stimulation of fibroblasts, indicating that they may restore blood flow to the 

infarct and mitigate excessive scar formation in the heart. We characterized the miR 

signature that CPCs release in response to hypoxic conditions and found several to be 

upregulated in secreted exosomes. Statistical analysis revealed clusters of co-varying 

miRs and predicted their physiological response, laying groundwork for development of 

rationally bio-inspired therapeutics. 
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CHAPTER 1 

INTRODUCTION 

 
 
 

1.1 Motivation 

The National Institutes of Health estimates that among the current population, 7.9 

million Americans have suffered acute MI.1 Current treatments are limited to immediate 

intervention, including angioplasty and thrombolysis, which serve to restore blood flow to 

the infarcted region and thereby mitigate further damage, but fail to regenerate tissue. 

During the ischemic injury and in subsequent reperfusion,2 deleterious signaling 

cascades in the affected tissue are triggered, leading to localized death at the cellular 

level.3 As adult CMs are terminally differentiated4 and relatively non-proliferative,5 the 

ischemic insult leads to eventual dysfunction and failure at the organ level6; rather than 

regenerate, the heart forms a non-contractile fibrotic scar in the infarct region that is key 

to subsequent degeneration. Because the initial cell death is primarily regional,7 

localized therapy to target and reverse the damage by protecting or regenerating CMs or 

restoring blood flow to the injured myocardium is quite promising. 

Apoptotic pathways are complex and include many molecules, including whose 

activation either promote or inhibit cell death, such as Bcl-2,8, 9 Bcl-xL,10 and XIAP.11 

Other proteins outside of apoptotic pathways also improve cell survival, such as 

superoxide dismutase (SOD) and catalase that attenuate oxidative stress produced 

during ischemia–reperfusion (IR) injury.12 Furthermore, expression and activity of these 

proteins are regulated by intracellular signaling molecules. Whereas many of these 
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kinases have specific small molecule inhibitors, delivery and toxicity concerns due to the 

need for large systemic doses preclude their use. 

The development of miR-based pharmaceuticals holds exciting promise for 

improving the status quo of medicine.13 Traditional pharmaceuticals have faced 

significant limitations: protein-based therapeutics are generally restricted to extracellular 

receptors; and small‐molecule drugs modulate only certain functions of their targeted 

protein and are limited in specificity. In contrast, by exploiting endogenous translational 

machinery by delivering synthetic miR mimics, genetic pathways can be regulated 

selectively.14 The range of miR-based pharmaceuticals is wide, with potential 

applications ranging from cancer to diabetes and heart failure. Furthermore, some miRs 

associated with cardiac development, endothelial cell proliferation, vascular integrity, 

and CM and vascular smooth muscle cell differentiation have been identified and could 

be applied as therapeutics.15-17 

While overexpressing anti-apoptotic proteins and antioxidants in CMs has shown 

functional improvements in animal models,18, 19 many delivery hurdles prevent clinical 

translation. The short circulation half-life of these proteins and small molecules20 

precludes systemic delivery due to the need for extended exposure to large amounts of 

therapeutics needed. To address this concern, many studies have been performed using 

biomaterials for sustained, local delivery.21, 22 Despite some successes, methods to 

deliver drugs to the infarct currently rely on passive release into the interstitium from 

delivery vehicles or internalization by phagocytic cells. As the majority of phagocyctic 

cells accumulate 24–72 hr following ischemia-reperfusion (IR) injury,23 delivery vehicles 

that rely on passive macrophage-mediated release do not inhibit the excessive 

apoptosis that occurs in CMs during the initial 72 hr. 
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Drug delivery vehicles that target CMs are virtually nonexistent, owing largely to 

the non- phagocytic nature of these cells. However, recent studies have implicated  

GlcNAc as a viable candidate for a drug delivery system targeted to CMs, demonstrating 

the ability of CMs to bind to and internalize GlcNAc-decorated liposomes.24, 25 

Challenges exist in the development of RNAi therapies, such as protecting the 

miR molecules from ribonucleases (RNases),14 and difficulty inducing cellular uptake by 

the target cell population. RNases that are present in bodily fluids readily degrade miR, 

requiring protective measures such as encapsulation of the miR26 or the use of 

chemically modified RNA.27 The highly charged backbone and size of nucleic acids 

precludes passive cell penetration,14, 28 necessitating incorporation of a mechanism for 

cellular uptake in most cell types. 

Solid particles have long been researched as delivery vehicles for bioactive 

molecules, to prevent delivery to unintended targets, convey therapeutic doses to tissue, 

and to shield cargo from recognition and degradation. However, the effects that spent 

vehicles or carrier degradation products may have on cells and tissue may disqualify the 

use of vehicles. Formulations of poly(lactic-co-glycolic acid) have been extensively used 

as micro-and nanoparticles, but degrade into acidic products that may elicit an 

inflammatory response.29 The recent development of polyketals as acid-degradable 

carriers provides a strategy for delivering therapeutics to cells and tissue where an 

inflammatory response would be undesirable;22, 29-32 for example PCADK degrades in 

acidic conditions—such as in the developing endosome—into acetone and 1,4-

cyclohexanedimethanol, both of which exhibit excellent biocompatibility. Already, 

polyketals have been shown to efficiently encapsulate small molecules and proteins, 

form micro- or nanoparticles, serve as extra- or intra-cellular delivery vehicles, and 

function compatibly in heart and lung applications.22, 29-32 
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Dendrimers, a class of radially symmetric, regularly branched polymers, have 

been extensively studied as delivery agents for a variety of drugs.33-35 One well studied 

dendrimer is poly(amido amine) (PAMAM), which generally consists of an 

ethylenediamine core that is reacted alternatively with methyl acrylate and 

ethylenediamine to form a size-tuned dendrimer commonly with amino termini.35 

Traditional strategies have largely consisted of physical entrapment of drugs within the 

relatively hydrophobic dendrimer core, with conjugated targeting moieties distributed 

among the dendrimer terminal groups. As such, dendrimers are attractive multi-

functional nanomaterials despite some side effects, such as cytotoxicity.36 Recent 

studies have extended dendrimer applications to siRNA- and miR- based therapeutics.35, 

37, 38 The suitability of a dendrimer-based RNAi therapeutic lies in part with the amino 

groups present at the termini and within the dendrimer that afford electrostatic 

interactions with—and thereby encapsulation and protection of—anionic miR mimics.37 

The terminal amines of many dendrimers can be readily conjugated with biomolecular 

ligands, which “decorate” the dendrimer with signals to potentially enhance cell targeting 

and uptake. Studies have indicated that varying the number of ligands on the vehicle 

surface elicits different binding and internalization kinetics, and dendrimeric materials 

can handily exert these “multivalent effects” by presenting an increased number, density, 

and arrangement of ligands.34, 38-40 The use of dendrimers for targeted miR delivery, 

however, is largely undeveloped, and novel architectures are needed that can bind 

sufficient amounts of miR with presenting adequate ligand density to trigger 

internalization. 

Until fairly recently, the heart was thought to be devoid of regenerative potential; 

endogenous mammalian cardiac regeneration declines rapidly after birth, but a small 

population of ckit+ cardiac-resident stem-like cells have been identified within the past 

decade.41 While not fully understood, researchers have induced the differentiation of 
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these CPCs into CMs, endothelial, and smooth muscle cells.42 These and other stem cell 

types have been attractive candidates for cell-based therapies wherein transplanted 

cells in the myocardium would differentiate and regenerate the damaged tissue. Results 

have been mixed: injected CPCs regenerated the myocardium and improved cardiac 

performance in rat and canine MI models;41, 43 and early human clinical trials 

demonstrated improved cardiac function resulting from injected stem cells,44, 45 although 

relatively few cells were retained within the myocardium, suggesting that regenerative or 

protective effects may occur through paracrine mechanisms rather than cardiogenesis. 

Studies have begun to explore stem cell-exerted paracrine effects: injection of 

conditioned media46, 47 or exosomes48 secreted from mesenchymal stem cells improved 

cardiac function and infarct size following IR. 

1.2 Specific Aims 

The need exists for therapeutic drug delivery systems that can mitigate tissue 

damage within and around the infarcted territory. Despite substantial development in the 

general field of nano-vehicles to deliver beneficial molecular cargo to cells, further 

research regarding vehicular architecture and targeting capabilities to suit delivery to 

cardiac-specific cells is needed. Furthermore, although stem cells are known to exert 

beneficial effects on the infarcted heart, the paracrine network of miR intercellular 

transfer from such cells has yet to be elucidated or exploited. We hypothesize that 

specially designed therapeutic systems will ameliorate the MI heart by featuring 

characteristics suitable for the delivery of cardio-protective and pro-regenerative agents. 

We propose investigation through the following aims: 

Specific Aim 1: Evaluate efficacy of a polymeric nanoparticle system featuring a 

surface-decorated carbohydrate ligand to enhance uptake by CMs. A molecular tether 

was synthesized to decorate PCADK nanoparticles with GlcNAc, a saccharide that 



www.manaraa.com

 6 

triggers internalization by otherwise non-phagocytic CMs. Functionalized nanoparticles 

(300-400 nm) loaded with anti-apoptotic p38 mitogen-activated protein kinase (MAPK) 

inhibitor SB239063 were injected into the myocardium directly following occlusion and 

reperfusion of the left descending coronary artery in a rat model of MI. The effectiveness 

of the proposed therapeutic system in mitigating cardiac dysfunction was determined by 

evaluation of CM apoptosis in infarcted tissue, ejection fraction, and infarct size. 

Specific Aim 2: Synthesize and validate novel dendrimeric vehicle featuring 

hemispheric-selective decoration of bioactive ligands for miR-based therapy. A vehicle 

design based on PAMAM architecture provided a platform to deliver therapeutic miR. It 

featured a region of one-half the structure devoted to nucleic acid binding and the other 

half to high-density ligand presentation that induced multivalent cell interactions. Human 

vascular endothelial cells (HUVECs) were treated with such “bowtie” structures loaded 

with the angiogenic miR-126 and decorated with poly(arginine)9 (poly(R)) or RGD 

peptides. Delivery system suitability was evaluated by quantifying cell proliferation and 

tube formation, two hallmarks of angiogenesis. 

Specific Aim 3: Evaluate cardioprotective/regenerative potential of exosomes 

secreted from hypoxic CPCs. The differential release of miR-containing RNA from CPCs 

subjected to hypoxia was evaluated by miR array and reviewed for pro-regenerative 

application. The protective/regenerative effects of the hypoxic exosomes were evaluated 

in relevant cardiac cells by evaluating angiogenic potential and mitigation of fibroblast 

stimulation. Furthermore, we employed statistical modeling (principle component (PC) 

and partial least squares regression (PLSR) analyses) to identify co-varying miRs and 

their physiological response to elucidate clues for bio-inspired cardiac therapeutics. 
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CHAPTER 2 

BACKGROUND 

 
 
 

2.1 Myocardial infarction 

2.1.1 Statistics 

According to the American Heart Association,49 83.6 million Americans (>1 in 3) 

have at least one type of CVD. A major subgroup of coronary heart disease, MI, affects 

7.6 million Americans. Cardiovascular diseases accounted for 31.9% of US deaths in 

2010, which is more than any other major cause of death, and is greater than combined 

deaths from cancer and chronic lower pulmonary disease. In 2010, US direct and 

indirect costs of CVD totaled $315.4 billion, and costs are projected to increase to $918 

billion, when 43.9% of the US population is expected to have CVD. 

2.1.2 Pathogenesis 

Acute MI is most frequently a manifestation of coronary artery disease.50 It is 

commonly triggered by disruption of an atherosclerotic plaque in an epicardial coronary 

artery, which leads to clotting and occlusion of the artery. When unstable, plaques may 

also rupture and promote an occluding thrombus. Arterial occlusion prevents blood from 

flowing to part of the heart, and muscle is injured due to the resulting ischemia, or lack of 

oxygen and nutrients. Injured heart tissue conducts electrical impulses more slowly than 

healthy tissue, creating a difference in conductance velocity and leading to lethal 

arrhythmias. Symptoms of MI include pain in the chest, upper extremity, and jaw, as well 

as shortness of breath, excessive sweating, nausea, or fainting. However, these 

symptoms are not specific to MI, and proper diagnosis may include evaluation by 

echocardiogram (ECG), biomarkers, and cardiac imaging.51 
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2.1.3 Diagnosis 

Diagnosis criteria for acute MI includes detection of increased levels of 

biomarkers (such as tryponin or creatine kinase) with symptoms of ischemia, changes in 

ECG readout including development of pathological Q waves, or imaging evidence of 

loss of viable myocardium.51 The term MI may include qualifiers, such as the amount of 

myocardial loss (infarct size), circumstances that lead to the infarct (whether 

spontaneous or medical procedure-related), and the timing of the necrosis and 

observation (evolving, healing, or healed).52 Immediate treatments for suspected MI 

include aspirin to prevent further blood clotting, and nitroglycerin to treat chest pain. 

Some immediate treatment regimens include oxygen, but that has been shown to be 

deleterious to the heart. Reperfusion therapy includes angioplasty and thrombolysis, and 

multiple blockages may require coronary artery bypass graft surgery (CABG). There are 

no definitive treatments for MI to repair or regenerate the heart.51 

2.1.4 Pathophysiology 

The pathology of MI includes myocardial cell death due to ischemia, either 

through oncosis (ischemic cell death) or apoptosis. After the onset of MI, cell death is not 

immediate but takes a period of time to develop (as little as 20 min). Complete necrosis 

of the affected myocardial cells takes several hours, and is a function of collateral 

circulation to the to the ischemic zone, arterial occlusion, sensitivity of myocytes to 

ischemia, pre-conditioning of cells, and individual demand of cells for oxygen and 

nutrients. The size of MI can be classified as microscopic, small (<10% of left ventricle 

(LV) myocardium), moderate (10-30% of LV), or large (>30% of LV).51 

The stages of MI are acute, healing, or healed. In acute MI, affected myocardium 

features the presence of polymorphonuclear leukocytes. The absence of 

polymorphonuclear leukocytes, and presence of mononuclear cells and fibroblasts 
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characterize the healing infarction. The healed infarction features scar tissue without 

cellular infiltration. The temporal characterization of MI may be classified as evolving (<6 

hr), acute (6 hr – 7 days), healing (7 days – 28 days), and healed (29 days and 

beyond).52 

2.1.5 Biomarkers 

A preferred method for diagnosis includes detection of biomarkers in the 

circulation, as myocardial cell death increases the appearance of different proteins in the 

blood, such as myoglobin, troponin (I and T), creatine kinase (CKMB) and others.52 

However, an increase in such biomarkers reflects necrosis, and not necessarily acute MI. 

Other conditions that may raise biomarkers include congestive heart failure, aortic 

dissection, aortic valve disease, hypertrophic cardiomyopathy, renal failure, stroke, 

sepsis, extreme exertion, and burns.53, 54 As troponin is nearly absolutely specific to 

myocardial tissue and exhibits high clinical sensitivity, it is the preferred biomarker for 

myocardial necrosis. Its sensitivity can reflect even microscopic zones of myocardial 

necrosis.55 

2.1.6 Imaging techniques 

Imaging techniques allow for great evaluation and characterization of MI. 

Important parameters include perfusion, myocyte viability, myocardial thickness, motion, 

and effects of fibrosis on kinetics of radiolabelled and paramagnetic contrast agents. 

Commonly used imaging techniques include echocardiography,56 radionuclide 

ventriculography,57 myocardial perfusion scintigraphy, and magnetic resonance 

imaging.58 Positron emission tomography and X-ray computed tomography are less 

commonly used.59, 60 
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2.1.7 Risk factors and recurrence prevention 

Risk factors for acute MI include existing CVD, age, tobacco smoking, high low-

density lipoprotein blood levels, low high-density lipoprotein levels, diabetes, high blood 

pressure, lack of physical activity, obesity, chronic kidney disease, and excessive 

alcohol consumption.55 The risk of MI recurrence includes strict blood pressure 

management, ceasing tobacco smoking, exercise, healthy diet, and limitation of alcohol 

intake. Medications for recurrence prevention include antiplatelets (such as aspirin), beta 

blockers, angiotensin-converting enzyme (ACE) inhibitors, statin therapy, aldosterone 

antagonists, and heparin. 

2.2 pH-Sensitive polymers 

2.2.1 Polymers for drug delivery 

The decreasing pH of the maturing endosome provides for two strategies by 

which the endosome can be disrupted: hydrolysis and protonation.33 In the first camp are 

acetal and orthoester hydrolysis (Figure 2.1). In use, these functional groups link two 

molecules together (such as polyethylene glycol (PEG) to increase water solubility and a 

hydrophobic molecule), which provides for convenient characteristics for the overall 

compound. As the endosomal pH decreases, the acetal or orthoester linker is cleaved, 

creating a scenario where the endosomal membrane is disturbed, such as a 

hydrophobic molecule becoming embedded into and rupturing the membrane. 

 
 
 



www.manaraa.com

 11 

 
Figure 2.1. Depiction of acetal and orthoester hydrolysis. 

 
 
 

Protonation of the primary amines in polyethylenimine (PEI) (Figure 2.2), as well 

as imidazole and carboxyl groups, is the other general strategy to disrupt the endosome. 

The mechanism by which the first two approaches work is described by the “proton 

sponge” hypothesis.33 That is, that only a percentage of these groups are protonated at 

physiological pH, and that as the endosome becomes more acidic, the amines and 

imidazoles act as a buffer by binding to the incoming hydrogen ions. The ATPase 

enzyme, which actively transports protons into the endosome from the cytosol, then 

transports more hydrogen ions in order to reach lysosomal pH. However, an influx of 

counter ions ensues to balance the increased number of protons. It is this increased ion 

concentration which leads to osmotic pressure in the endosome, and ultimately swelling 

and rupturing of the endosomal membrane. As every third atom of PEI is nitrogen, there 

is a high density of amines, only 15-20% of which are protonated at physiological pH 

(the pKa of primary amines in PEI is ~5.5). Polyethylenimine is commercially available 

and was an early method for gene delivery, but the cytotoxicity of PEI limits its use, 

though conjugation of molecules resulting in greater biocompatibility is an option.61 
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Figure 2.2. Depiction of polyethylenimine protonation. 

 
 
 

Imidazole protonation (Figure 2.3) relies on the “proton sponge” theory, yet it is 

significantly less cytotoxic than PEI.61 The pKa of imidazole is ~6.0, providing an 

appropriate buffer between physiological and lysosomal pH.  

 
 
 

 
Figure 2.3. Depiction of imidazole protonation. 

 
 
 

The third major approach to endosomal disruption by protonation is carboxyl 

protonation (Figure 2.4), which converts an overall hydrophilic polymer into a 

hydrophobic polymer.62 In this scenario, hydrophobic molecules are conjugated to a 

polymer that also includes carboxyl groups, some of which remain unprotonated at 

physiological pH. Examples of such polymers include polyethylacrylic acid (PEAAc) and 

polypropylacrylic acid (PPAAc).62, 63 As the pH drops in the maturing endosome, the 

number of protonated carboxyl groups increases, leading to the conformation change of 

the polymer. This causes the hydrophobic tails of the polymer to partition into and 

rupture the endosomal membrane. 
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Figure 2.4. Depiction of polypropylacrylic acid. 

 
 
 

2.2.2 Acid-cleavable acetal and orthoester bonds 

Use of therapeutic-loaded liposomes as a method of cytoplasmic drug delivery 

has been studied extensively for the past 30 years.64, 65 Upon internalization by 

endocytosis, the destabilization of pH-sensitive liposomes in the acidic endosome and 

redistribution of the bilayer components leads to destabilization of the endosomal 

membrane. This allows for the contents of the liposome to leak into the cytoplasm. 

Alternatively, lipids can be used to create lipoplexes. Of the several types of lipid pH-

sensitivity, acetal and orthoester linkages will be discussed. 

Acetals can be synthesized from primary, secondary, and tertiary alcohols.65, 66 

The rate of hydrolysis is first order relative to the hydronium ion. Therefore, per unit 

decrease in pH, the rate of hydrolysis increases ten times. It is worth noting that the rate 

of hydrolysis can be tuned according to the structure of the acetal, something which can 

be useful for temporal control of hydrolysis in the maturing endosome.67 

Unlike phospholipids, glycolipids (Figure 2.5) are not usually charged, which can 

ease synthesis and removes the potential for ionic interaction with the biological 

system.68, 69 Additionally, the hydroxyl groups on the sugar group allows for surface 

modification. Song, et al. synthesized a glycolipid conjugate of glucose and two palmitoyl 

chains connected by an acetal bond.70 
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Figure 2.5. Structure of example glycolipid. 

 
 
 

However, the researchers found that the acetal hydrolyzed rapidly at pH 4, but 

relatively slowly at pHs 5 to 7. The fact that only late endosomes and lysosomes reach 

an adequately low pH indicates that this lipid may not be a strong candidate for drug 

delivery. 

In another approach, Wong, et al. included the acid-labile acetal linkage in their 

synthesis of a PEG lipid, which they used as a lipopolyplex to deliver DNA.71 They 

included a cationic group because previous research has indicated that such groups can 

interact with anionic cell surface receptors and enhance the endosomal release rate of 

drugs. The presence of PEG can shield the cation from interaction with other 

compounds or proteins. Their synthetic scheme follows in Figure 2.6. 

 
 
 

 
Figure 2.6. Synthetic scheme of example polyethylene glycol-modified lipid. 
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That the acetal linker of lipids of similar structures hydrolyzes as varying pHs 

provides means by which drug delivery can be tailored depending on the progression of 

endosomal maturation.  

Orthoesters are known to be one of the most acid-sensitive functional groups, 

and due to a stable reaction intermediate, are generally expected to hydrolyze more 

quickly than acetals in response to a decrease in pH.72 Hydrolysis of the orthoester in a 

lipid cleaves the headgroup, leading to the collapse of the liposome and release of its 

contents. 

Zhu et al. produced a cationic lipid containing an orthoester functional group 

(Figure 2.7).73 

 
 
 

 
Figure 2.7. Structure of example orthoester lipid. 

 
 
 

Liposomes including this lipid demonstrated the ability to encapsulate and then—

in 10 min at pH 3.5—release fluorescent molecules. To fully cleave the headgroup, the 

mechanism undergoes two fast hydrolysis steps of the orthoester, but complete 

fragmentation of the lipid requires the slow final step of hydrolysis in the cleavage of an 

ester group. Incorporation of a single orthoester functional group in a lipid for drug 

delivery then may be most appropriate for collapse of the liposome in a mature 

endosome. 

To promote faster cleavage of the headgroup, Guo et al. designed a lipid that 

incorporated a diorthoester functional group.69, 74 The benefit of this approach is that the 
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fast first step of hydrolysis of the diorthoester completely fragments the lipid, leading to 

liposome collapse (Figure 2.8). 

 
 
 

 
Figure 2.8. Synthetic scheme for preparation of a pH-sensitive PEGylated lipid. Consists of 
a distearoyl gylcerol hydrophobic tail conjugated to a PEG headgroup through a diortho ester 
linkage. Liposomes composed partially of this lipid demonstrated long circulation times and acid-
triggerable content release. Especially useful is the diorthoester linkage, which leads to cleavage 
of the headgroup during the first step of hydrolysis, as opposed to an orthoester linkage. 

 
 
 

This lipid was found to be stable in pH 7.4 buffer at 37oC, but degraded in pH 5 

within one hour. In a mild pH of 5.5, liposomes (10% lipid content were degradable) 

released most of their contents within 30 min. 

2.2.3 Multi-functional polymeric drug delivery systems 

In an effort to more closely mimic naturally occurring viruses and endosomal-

disrupting toxins, researches have sought to design multifunction carriers which include 

three primary functions: targeting for endocytosis; disrupting the endosome by a 

triggered pH-responsive element; and delivering active therapeutic agents after 

trafficking into the cytoplasm.66 

Murthy et al. developed one of the first designs of such multifunction polymeric 

carriers, termed “encrypted polymers”.75, 76 In this approach (Figure 2.9), the polymer 

contains a membrane-disruptive backbone connected to the other molecular species via 
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acid labile acetal linkers. A disulfide bond connects the acid-degradable linker to either 

PEG grafts or therapeutic molecule. A targeting ligand for endocytosis can be attached 

to the PEG chains. In cases where the drug is not conjugated via a disulfide bond, ionic 

groups on the PEG terminus can complex with charged drugs. 

 
 
 

 
Figure 2.9. Cartoon depiction of internalization and endosomal disruption by encrypted 
polymer. 

 
 
 

In the whole polymeric configuration, PEG chains “mask” the membrane 

disruptive potential of the backbone. However, once the pH of the maturing endosome 

drops, hydrolysis of the acid-degradable linker “unmasks” the backbone and allows it to 

disrupt the endosome, and the drug diffuses into the cytoplasm. Within the cytoplasm, 

disulfide bonds are reduced, and the active therapeutic molecule is free to perform its 

intracellular function. 

Knorr et al. built on existing strategies and developed another approach for 

intracellular DNA delivery.77 Historically, polyplexes of negatively charged DNA and 

positively charged polymers have been developed as a way to shield DNA from 

degradation in the endosome. Polyethylenimine (PEI) is a good choice due to its high 

proton buffering capacity. In order to achieve high gene transfer activity, an excess of 
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PEI is used, which abundance leads to a net positive charge of the polyplex. This can be 

detrimental due to interactions with negatively charged physiological compounds. It is 

possible to alleviate these side affects by neutralizing the polyplex surface by 

incorporating PEG chains in the formulation. The Knorr group used Buchwald-Hartig 

coupling to substitute a PEGylated aromatic bromine with piperazine (Figure 2.10). The 

remaining secondary amine of piperazine then reacted with an ester-maleimide 

compound, after which the exposed maleimide was free to react with a thiol-

functionalized PEI.77 

 
 
 

 
Figure 2.10. Scheme involving Buchwald-Hartig coupling for synthesis of a PEI polyplex. 
Substitution of a PEGylated aromatic bromine with a protected piperazine, followed by generation 
of an aniline-type acetal for acid-labile cleavage. PEI forms a polyplex with DNA, which surface is 
neutralized by the presence of PEG. 

 
 
 

The acetal link between PEG and the compound has a purpose. Extensive 

PEGylation of polyplexes reduces the intracellular release of DNA from the endosome. 

Therefore, as the pH drops, the polyplex becomes less PEGylated and results indicate 

higher gene transfer efficiency from these de-PEGylated polyplexes than their non-acid 

labile counterparts.77 
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2.3 Peptide- and saccharide-conjugated dendrimers for targeted drug delivery 

Dendrimers provide a unique scaffold for biological applications because of their 

size, multivalency, and well-defined chemical composition.34 Dendrimeric conjugates 

containing multiples copies of saccharides or peptides may themselves exhibit 

therapeutic benefits and be developed as anti-prion, anti-microbial, and anti-viral agents. 

Positively charged dendrimers, due to either native PAMAM terminal amines or 

guanidine-modification, have shown the ability to prevent prion folding and even induce 

prion unfolding,78 with decreased cytotoxicity due to dendrimer glycosylation.79 For anti-

microbial application, dendrimers modified with largely positive peptides show strong 

toxicity and selectivity for bacteria.80 Glycodendrimers have demonstrated anti-viral 

properties by presenting saccharides to either directly bind to viruses or to saturate cell 

surface receptors;81 both methods inhibit virus-cell interaction. In other applications, 

dendrimers can be used to modify other nanodevices, such as carbon nanotubes,82-84 

gold nanoparticles85 and nanorods,86 magnetic particles,87, 88 and quantum dots.89 

Modification by dendrimers serves to improve biocompatibility, enhance solubility, and 

provide a mechanism for tissue- or cell-specific targeting. 

As illustrated in Figure 2.11, there are in general three methods to load the 

dendrimer scaffolds with therapeutics. First, therapeutic compounds may associate with 

dendrimers through hydrophobic interactions, either by inclusion within the dendrimer or 

the hydrophobic pit of dendrimer-bound cyclodextrin. This method has provided for the 

solubilization of a huge range of hydrophobic small molecules involved in anti-cancer, -

depressant, -inflammatory, and -microbial applications.90-92 The second association is 

through electrostatic interaction: charged therapeutics can directly form complexes with 

dendrimers containing counter-charged groups. This method has been widely studied for 

nucleic acid-based therapeutics. The third approach is through covalent bonding, which 

method is convenient is convenient when the therapeutic contains functional groups that 
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are readily ligated. This can be beneficial to prevent hydrophilic molecules from leaching 

out of dendrimer and inducing side interactions. In the case where a therapeutic agent 

should be free from vehicle to be fully active, consideration should be taken for how the 

agent will be released, such as by conjugation via acid labile linkage that can be cleaved 

in the mature endosome. Covalently attaching molecules to dendrimers is also of use in 

the development of drug delivery vehicles, as bound fluorophores can elucidate vehicle 

biodistribution and localization. 

 
 
 

 

Figure 2.11. Different types of dendrimer–therapeutic cargo associations. (a) Hydrophobic 
interactions between drug molecules and dendrimer backbone or constituent. (b) Ionic binding. 
(c) Covalent ligation, including degradable linkages. (d) Dendrimers can also be used to 
functionalize and/or enhance the solubility and biocompatibility of other nanodevices. 
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2.3.1 Cell- and tissue-targeting of bioactive dendrimer conjugates 

The short peptide RGD is known to bind to integrins,93 and studies have 

indicated that cyclized RGD peptides bound with high affinity to cells expressing the aVb3 

integrin, such as angiogenic tumor endothelial cells. By decorating the surface of 

generation 5 PAMAM dendrimers with a double cyclized RGD peptide and Alexa Fluor 

488, Baker’s group showed preferential binding of the dendrimer to HUVECs, and some 

binding to Jurkat T lymphocyte cells in vitro.94 In contrast, the dendrimers showed only 

moderate binding to KB cells and virtually no binding to L1210 mouse lymphocyte cells. 

This strategy for anti-tumor therapy would rely on targeting the tumor vasculature to 

inhibit neovascularization.  

Other groups have applied cyclized RGD in dendrimeric delivery systems. 

Liskamp’s group conjugated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 

(DOTA) to a dendrimer featuring multivalent cyclic-RGD to develop a vehicle that could 

target and image tumors.95 Following complexation of targeted vehicle with 111In and in 

vitro validation of binding to aVb3 integrin, the group injected the radiolabeled dendrimer 

into SK-RC-52 tumor-bearing mice and found enahanced uptake of the RGD-targeted 

vehicle in tumors. Their analysis on the effect of multivalency indicated that tetrameric 

RGD-dendrimer exhibited better tumor targeting than dendrimers decorated with two or 

fewer RGD peptides. Development of a targeted delivery vehicle that chelates 

radioisotopes could provide a pathway for tumor therapy by complexing DOTA-

conjugated glycodendrimers with 90Y3+. However in other studies, dendrimers conjugated 

to Gd(III)-chelating agents and cyclized RGD demonstrated effective binding to 

melanoma cells only in vitro, while in vivo tumor uptake was negligible.96 The inability for 

vehicle to extravasate into tumor illustrates that RGD may be a ligand more suited for 

targeting tumor vasculature rather than tumor cells. 
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While most bioactive dendrimer conjugates rely on surface functionalization, 

Hammond’s group ligated a clinically relevant anti-tumor peptide tryptophan-isoleucine-

phenylalanine-tryptophan-isoleucine-glutamine-leucine (WIFPWIQL) for gene therapy.97 

This was accomplished by reducing the disulfide bond of a generation 4 cystamine-core 

PAMAM dendrimer, followed by conjugation to the peptide through a heterobifunctional 

linker. This vehicle showed propensity to condense plasmid DNA into small structures 

(<210 nm) and transfected prostate carcinoma cells in vitro to express luciferase. The 

group demonstrated up to 5x greater transfection with this asymmetrical vehicle than 

control groups, and even greater transfection than PEI, a transfection standard. 

Liu et al. performed in vivo phage display to identify peptide sequences that 

targeted lung cancer xenografts in a mouse model.98 After conjugating generation 4 

PAMAM dendrimers with fluorescein isothiocyanate (FITC) and the phage display-

identified targeting sequence arginine-cysteine-proline-leucine-serine-histadine-serine-

leucine-isoleucine-cysteine-tyrosine (RCPLSHSLICY), the group found that the particles 

enriched three times more in NCI-460 than 293T cells in a time- and dose-dependent 

manner. In vivo, the group injected the same vehicles intravenously for biodistribution 

assay, and found that while the targeting and non-targeting vehicles were both found in 

other organs, animals treated with targeting vehicles exhibited 30% greater fluorescence 

intensity in the lung cancer xenograft than non-targeting vehicles.  

Another research group investigated the use of a previously identified peptide 

cysteine-arginine-glutamic acid-lysine-alanine (CREKA) for use in a dendritic tumor-

targeting vehicle.99 In vivo phage display had demonstrated its ability to home to tumor 

extracellular matrix via recognition of blood clotting and in a separate study, was used 

for atherosclerotic plaque imaging. In addition to CREKA, the group also investigated the 

use of a cyclic nonapeptide, LyP-1 (cysteine-glycine-asparagine-lysine-arginine-

threonine-arginine-glycine-cysteine) that recognizes tumor lymphatic cells. By tethering 
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these peptides and fluorescein to a pentavalent dendritic scaffold, the ability of these 

peptides to target tumors was elucidated: they found that CREKA-functionalized 

dendrimers localized in prostate cancer xenograft vasculature, thereby justifying the use 

of CREKA-functionalized dendrimers for the use of future cancer therapies through anti-

vasculature means.  

Besides phage display, another method for the development of a targeting 

dendrimer is through derivation of peptide sequences from known targeting proteins. 

Leptin is a 146 amino acide polypeptide that is secreted into the bloodstream by 

adipocytes and acts on leptin receptor-expressing cells in the brain, and Barrett et al. 

identified leptin30, a 30-amino acid derivative of the leptin polypeptide that localized in 

the parenchyma.100 By conjugating a poly-L-lysine dendrimer with leptin30, Jiang’s group 

demonstrated the ability of the dendrimer to traverse a brain capillary endothelial cell 

monolayer and then transfected brain cells with the targeting dendrimers.101 This was 

followed by effective in vitro transfection of BV-2 microglial cells by luciferase plasmid 

DNA-loaded dendrimers and in vivo accumulation of the dendrimers in the brain of a 

mouse model. Luciferase activity in the brain was in 80% greater abundance in the 

targeting dendrimer group than the non-targeting dendrimer group, thus demonstrating 

the use of leptin30-decorated dendrimers for gene therapy to the brain. 

Macrophages exhibit a receptor for mannose, so in an effort to develop a 

macrophage-targeting dendrimer, Benito, et al. conjugated mannose and b-cyclodextrin 

to dendrimers, followed by inclusion of fluorescent 6-p-toluidino-2-naphthalenesulfonic 

acid within the cyclodextran.102 The group explored the multivalent effect of vehicle 

activity by varying level of decoration from one to six mannose molecules and found an 

amplification of lectin-binding strength for the dendrimers with higher valance, 

demonstrating the “cluster effect.” Such a delivery vehicle could be useful in therapies to 
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target macrophages, such as rheumatoid arthritis and other macrophage-mediated 

disorders. 

In addition to applicability of mannosylated dendrimers to macrophages, 

Uekama’s group demonstrated gene transfer via these dendrimers in other cell types.103 

They found that mannosylated generation 3 dendrimers, complexed with luciferase 

pDNA, provided for high gene transfer activity in NR8383, NIH3T3, HepG2, and 

especially A549 cells. Interestingly, the group found that gene transfer activity of this 

glycodendrimer was not inhibited by the presence of serum in the treatment medium and 

described the ability of the vehicle to escape the endosome and localize to the nucleus. 

These results indicate that mannosylated dendrimer could provide for effective gene 

transfer therapy in various cell types. 

Carbon nanotubes have great potential for biomedical applications, but can 

exhibit cytotoxicity. Bertozzi’s group employed copper-mediated click chemistry to 

conjugate generation 3 glycodendrimers (mannose, lactose, galactose) to single-walled 

carbon nanotubes and found dramatically decreased cytotoxicity in HEK293 cells.104 

Furthermore, decoration of SWCNTs with glycodendrimers increased solubility up to a 

few months. In vitro studies with FITC-conjugated dendrimers demonstrated that these 

decorated SWCNTs showed selectivity in binding to lectins Conavalia ensiformis 

agglutinin, Arachis hipogaea agglutinin, and Psophocarpus tetragonolobus agglutinin.  

Hepatic cells express asialoglycoprotein receptors that bind galactose and N-

acetylgalactosamine (GalNAc), which receptors have been exploited for treatment of 

hepatic cancer with drug-loaded dendrimers. Medina, et al. GalNAc to generation 5 

PAMAM dendrimers with a diaminobutane core105 that had been shown to preferentially 

accumulate in the liver and extravasate through the leaky tumor vasculature.106, 107 

Through in vitro studies of HepG2 and MCF-7 cells, the group found selective uptake by 

hepatic cells, with nearly 100% of the HepG2 cells internalizing the dendrimers within a 
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short period of time. A benefit of this delivery system was that the vehicle required only 

12 molecules of saccharide per dendrimer to trigger uptake. Nearly 90% of the terminal 

groups remain for conjugation to anti-tumor drugs or imaging moieties. 

Asialoglycoprotein receptors on hepatic cells have been targeted for RNAi 

therapy with gene-loaded dendrimers. Following successful development of a charge 

neutral, hepatic cell-targeting delivery vehicle, Luo’s group complexed anti-luciferase 

siRNA to hydrazide-terminated PAMAM at pH 5 via electrostatic interaction.108 The 

remaining amines were crosslinked to retain encapsulated siRNA following pH 

neutralization. This loaded GalNAc-conjugated dendrimer successfully induced RNAi by 

reducing fluorescence in luciferase-expressing HepG2 cells in vitro. This demonstrated 

the potential for charge-neutral dendrimeric vehicles in drug-delivery applications where 

cytotoxic effects due to dendrimer cationic charge are detrimental. 

2.3.2 Delivery of bioactive dendrimer conjugates carrying therapeutics 

As a cell-penetrating peptide, glycine-arginine-lysine-lysine-arginine-arginine-

glutamine-arginine-arginine-arginine-proline-glutamine (Tat)-decorated dendrimers have 

seen varied success as transfection agents. In an early paper by Juliano’s group, 

generation 5 PAMAM dendrimers conjugated to Tat (15.9 peptides per dendrimer) 

showed no improvement in the delivery efficiency of siRNA oligonucleotides against the 

transmembrane protein p-glycoprotein MDR1 in 3T3 cells.37 In a more recent paper, 

however, Chang’s group found that Tat-functionalized dendrimers exhibited high 

transfection levels of anti- epidermal growth factor receptor (EGFR) psiRNA;109 in fact, 

they demonstrated that the targeted dendrimer performed as well as the Lipofectamine 

2000 treatment group. In vitro, EGFR knockdown in U251 glioma cells by the targeting 

dendrimer was slightly better than lipofectamine, whereas apoptosis was similar 

between the treatment groups. Furthermore, in vitro cell invasion was inhibited to a 
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greater degree by the targeted delivery vehicle than lipofectamine (66.0% versus 62.3%). 

In a U251 subcutaneous tumor mouse model, the group described significant apoptosis 

and depressed EGFR expression by the targeted vehicle, and that the tumor volume 

increased by only 15x whereas saline treated animals experience 89-fold increase. 

Following passive localization due to the enhanced permeability and retention effect of 

tumors, cell-penetrating peptides such as Tat can be used for anti-tumor therapies. 

Another peptide derivative with great potential for targeting the brain is Agniopep-

2. Part of the Kunitz domain of aprotinin, this 19-amino acid peptide accumulates in the 

parenchyma, binds to lipoprotein receptor-related protein 1, and exhibits a high 

propensity to transcytose across the blood-brain barrier.110 Jiang’s group conjugated 

Angiopep-2 to the terminal groups of generation 5 PAMAM and determined that the 

vehicle was internalized by brain capillary endothelial cells through clathrin and 

caveolae-mediated endocytosis, and to a small extent, macropinocytosis.111 The group 

found in a mouse model that brain uptake of targeting vehicles loaded with fluorescent-

labeled DNA was up to 8-fold greater than non-targeting vehicle, and determined a 

positive correlation between the level of dendrimer decoration and brain uptake. In a 

later study, the group found the biodistribution of the targeting vehicle in the brain—

especially within the tumor—was greater than controls and demonstrated the ability of 

Angiopep-2 modified dendrimer to target glioma.112 Furthermore, they loaded the 

dendrimers with tumor necrosis factor (TNF)-related apoptosis-inducing factor (TRAIL) 

and in a glial xenograft mouse model, found greater apoptosis in the tumors due to 

targeting dendrimer treatment groups than controls, including commercial Temozolomide. 

In survival studies, the targeting dendrimer increased mean survival time significantly: 61 

days for Angiopep-2-modified dendrimer versus 49 and 25 days for Temozolomide and 

saline treatment groups. These results that the targeted delivery vehicle can perform 
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better than a clinical standard are promising for future applications in treating brain 

tumors. 

Colchicine is a current standard treatment to treat gout, but has potential as an 

anti-cancer agent due to its inhibition of mitosis. In an attempt to develop a targeted 

vehicle for colchicine to cancer cells, Reymond’s group conjugated the drug to 

dendrimers via a thioether bond and screened a small collection of attached glycans 

(glucose, galactose, GalNAc, and lactose) and amino acids (including serine, threonine, 

histidine, aspartic acid, glutamic acid, leucine, valine, and phenylalanine) for uptake by 

HeLa tumor cells.113, 114 Although the decorated dendrimers reduced activity of the drug, 

the group found that all glycodendrimeric vehicles caused extensive in vitro HeLa cell 

death. Conversely, non-transformed mouse embryonic fibroblasts experienced extensive 

cell death only from treatment with highly GalNAc-decorated vehicles, and not other 

glycodendrimer treatments. These findings suggest that several saccharides may serve 

as effective ligands for selective anti-tumor dendrimeric delivery vehicles while not 

targeting other cell types; glucose-conjugated dendrimers demonstrated a high 

selectivity for HeLa cells by inducing cell death in 163-fold more HeLa cells than 

fibroblasts. It should be noted that, whereas many dendritic vehicles are based on 

branched polymers, the structure of Reynold’s dendrimers consisted solely of amino 

acids. Their reasoning was based on the aspect that unless the vehicle is cleared from 

the body, dendritic drug carriers should undergo intracellular biodegradation after 

delivery, and that a dendrimer consisting of peptide building blocks could prove more 

biocompatible than other dendrimers. 

One group used galactose-conjugated dendrimers as a delivery vehicle for anti-

malarial therapy.115, 116 Primaquine is a common anti-malarial medication, but in regular 

formulation can exhibit severe side effects, such as hemolysis. To target the drug to the 

site of metabolism in the liver and shield it from inducing side effects in side cell 
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populations, the researchers conjugated galactose to polypropyleneimine dendrimers 

and complexed primaquine within the carrier via the hydrophobic effect. Two hours after 

IV injection of the loaded vehicle, 50% of the initial dose was found in the liver, 

compared to 26% of the non-targeted vehicle, demonstrating the targeting ability of 

galactose. Besides targeting to the liver, coating of the dendrimer with galactose had 

three beneficial effects: prolonged drug release up to 6 days, compared to 2 days for 

uncoated dendrimer; 15-fold greater entrapment of primaquine; and drastically reduced 

hemolysis due to surface neutralization by glycosylation. In a later paper, the group 

loaded a related anti-malarial drug, chloroquine, into galactose-decorated poly-L-lysine 

dendrimers and found five-fold decreased uptake of the vehicle by macrophages than 

uncoated dendrimers.115 This characteristic would allow for shielding of the delivery 

system from macrophages while targeting the liver. Similar to previous findings, coating 

of the lysine dendrimers with galactose reduced hemolytic toxicity and immunogenicity of 

the conjugates while extending the release of the anti-malarial drug. 

Significant proof-of-principle research has been conducted with peptide- and 

glycodendrimer, i.e. the majority of research articles describe uptake of fluorophore-

conjugated dendrimers, while relatively few articles demonstrate therapeutic effects of 

drug-loaded vehicles. Obviously, for proposed drug delivery vehicles to reach the clinic 

this next step of testing must be taken. It is difficult to directly compare peptide—versus 

saccharide—decorated dendrimers, but it is clear that if specificity in vehicle uptake is 

desired, then appropriate ligands for cell-material interactions must be identified. The 

ready availability of phage display allows for screening of a much larger number of 

potential peptidic ligands than the number of ligands generally screened in glyco-

libraries. Considering the drastically greater number of permutations available in 

oligosaccharides than in peptides (206 versus 1.44*1015 in hexanucleotides and 

hexasaccharides, respectively),117 potential exists for identification of more efficient 
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saccharide ligands. Glycan arrays exist that can identify glycans that bind to peptides118, 

119, but methods should be adapted for binding to cells. The status quo in the 

development of dendrimeric delivery vehicles relies heavily on phage display and 

screening of small saccharide libraries for ligand identification, and to a small extent, 

derivation of short peptidic ligands from much larger antibodies and other binding 

proteins. Future development could include these methods and screening of 

glycosylated peptides and larger saccharide libraries. 

2.4 Therapeutic potential of exosomes 

Exosomes are small membrane-bound vesicles (30 – 120 nm) of endocytic origin 

and are actively secreted from cells. They are derived from luminal membranes of 

multivesicular bodies and are constitutively released by fusion of multivesicular bodies 

with the cell membrane.120 They are loaded with a variety of bio-active molecules—

including mRNA, miR, and proteins—that may change based on normal or pathological 

conditions. Originally considered cell debris or to contain cell refuse, membrane-derived 

vesicles were more appropriately characterized in 1987,121 and cell-cell information 

transfer via exosomes observed in 2002,122, 123 but miR encapsulation by exosomes was 

not verified until 2007.124, 125 Interestingly, the miR signatures are unique among the 

different carriers,126 and even between carriers and parent cells, suggesting regulated 

export of miRs.126-128 In the past few years, research results have suggested that 

exosomes can mediate cellular, tissue, and organ level communication under normal 

and pathological conditions. 

2.4.1 Exosome-cell interactions 

Once released, exosomes can interact with neighboring cells or enter the 

circulation, and have demonstrated the ability to cross the blood-brain barrier.129, 130 

Upon interaction with recipient cells, they may bind with plasma membrane via specific 
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receptors or be internalized by micropinocytosis to fuse with the plasma membrane, or 

be internalized by distinct endocytosis.131, 132 Exosomes have been shown to mediate in 

a wide range of functions, including tumor progression by promoting angiogenesis, 

tumor metastasis, acting as antigen-presenting vesicles to stimulate the anti-tumoral 

response, disseminate Alzheimer pathology, and have been implicated in the activities of 

stem cells.120 

2.4.2 Useful properties 

Several properties of exosomes make them especially suitable for ex vivo study 

and manipulation, and potentially useful in cell-cell communication.120 Exosomes have 

unique protein and miR signatures, which may differ from the parent cell. They exhibit 

specific biophysical properties, such as size and density that enable isolation/separation 

(such as by centrifugation).133 Their rigid lipid membrane retains structural integrity 

through freezing and thawing, as well as rendering them insensitive to hypotonic 

bursting.133, 134 Exosomes exhibit cell-specific signaling and targeting ligands. Finally, 

they are capable of acting as vehicles for drug delivery because of their ease of being 

isolated, and their potential for manipulation of RNA and protein content.129 

2.4.3 Exosomes in the heart 

Myocardial tissue secretes exosomes, which may be involved in heterocellular 

communication in the adult heart.135 Telocytes have been observed to secrete them in 

the border zone of the post-infarct heart.136 Barile et al. provided ultrastructural evidence 

that exosomes are secreted by cardiac progenitor in the normal adult mouse heart, and 

provided evidence of exosome uptake by CMs.135 Furthermore, Losordo’s group 

investigated exosome secretion from human and mouse hearts and provided electron 

microscopic images exosomes being formed within LV CMs from both healthy and heart 

failure patients.137 Barile, et al. went on to show multivesicular bodies in CPCs, 
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suggesting that CPCs also generate exosomes.135 Other researchers have observed 

exosomes in intracellular space between sarcomere, t-tubule, and nucleus after 

coronary artery.138 While it is still unknown how cardiac cells internalize exosomes, 

evidence points to the active internalization, rather than nonspecific membrane fusion, of 

exosomes.135, 139 Direct internalization and active transport of exosomes via the 

endocytic pathway to the perinuclear region has been shown, and Barile, et al. observed 

their uptake within small, cytoplasmic structures.135 The therapeutic benefit of CPC 

exosomes have been briefly explored: they have been shown the enhance endothelial 

migration140 and inhibit cell death in the MI heart.141 
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CHAPTER 3 

GLCNAC-DECORATED PCADK NANOPARTICLES FOR POST-

INFARCT HEALING 

 
 
 

3.1 Introduction 

Myocardial infarction affects 985,000 new patients in the U.S. annually and is the 

leading cause of global morbidity and mortality.142 During ischemic injury and in 

subsequent reperfusion,143 apoptotic signaling cascades in CMs are triggered, leading to 

localized death at the cellular level.144 As adult CMs are terminally differentiated145, 146 

and relatively non-proliferative,147 the ischemic insult leads to eventual dysfunction and 

failure at the organ level.6, 148 Because the initial cell death is primarily regional,7 

localized therapy to target and reverse the damage to the injured myocardium is quite 

promising. Therefore, CM-specific rescue presents itself as a compelling therapeutic 

target following MI.  

Apoptotic pathways are complex and include many molecules, including whose 

activation either promote or inhibit cell death. Several proteins in these pathways have 

demonstrated a cardioprotective role, such as Bcl-2,8, 149 Bcl-xL,10 and XIAP.11 Other 

proteins outside of apoptotic pathways also improve cell survival, such as SOD and 

Catalase that attenuate oxidative stress produced during IR injury.12, 150 Furthermore, 

expression and activity of these proteins are regulated by intracellular signaling 

molecules such as JNK,151, 152 Akt153 and p38.154 Whereas many of these kinases have 

specific small molecule inhibitors, delivery and toxicity concerns due to the need for 

large systemic doses preclude their use. 
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While overexpressing anti-apoptotic proteins and antioxidants in CMs has shown 

functional improvements in animal models,18, 19, 155-157 many delivery hurdles prevent 

clinical translation. The short circulation half-life of these proteins and small molecules20 

precludes systemic delivery due to the need for extended exposure to large amounts of 

therapeutic needed. To address this concern, many studies have been performed using 

biomaterials for sustained, local delivery.21, 22, 30-32 Despite some successes, methods to 

deliver drugs to the infarct currently rely on passive release into the interstitium from 

delivery vehicles or internalization by phagocytic cells. As the majority of phagocyctic 

cells accumulate 24-72h following IR injury,23 delivery vehicles that rely on passive 

macrophage-mediated release do not inhibit the excessive apoptosis that occurs in CMs 

during the initial 72h. Drug delivery vehicles that target CMs are virtually nonexistent, 

owing largely to the non-phagocytic nature of these cells. However, recent studies have 

implicated N-acetyl-D-glucosamine (GlcNAc) as a viable candidate for a drug delivery 

system targeted to CMs, demonstrating the ability of CMs to bind to and internalize 

GlcNAc-decorated liposomes.24, 25 The use of liposomes as a drug delivery vehicle, 

however, may lead to challenges: leakage of water-soluble drugs during preparation and 

storage is a known disadvantage; and the destabilization of liposomes in the presence of 

high-density lipoproteins in blood plasma limits its use.158 

Previously, we inhibited chronic cardiac dysfunction through the controlled 

release of the p38 inhibitor SB239063 from microparticles into the extracellular region of 

the post-infarcted heart.32 Despite this improvement in chronic function, there was no 

change seen in early function, indicating release was not fast enough or the inhibitor was 

not taken up by the appropriate cell type. In vitro, macrophages readily phagocytosed 

the particles whereas other cell types did not, most likely due to lack of targeting agents. 

In this study, we developed a drug delivery system for enhanced CM uptake by 

decorating degradable, biocompatible polymeric nanoparticles (polyketals) with GlcNAc 
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(cartoon depiction in Figure 3.1) and demonstrated its ability to be internalized by CMs. 

Using these GlcNAc particles, we were able to reduce infarct size and improve acute 

cardiac function in strong contrast to our published data with unmodified polyketals. 

 
 
 

 

Figure 3.1. Overall scheme for proposed GlcNAc-mediated drug delivery system. A) 
Decoration of drug-loaded polymeric nanoparticle with GlcNAc should provide a mechanism 
whereby therapeutics may be delivered intracellularly to CMs. B) The particle will be composed of 
the acid-labile PCADK. Once internalized, the particle will degrade into the biocompatible 
products acetone and cyclohexanedimethanol. 

 
 
 

3.2 Materials and methods 

3.2.1 Synthesis of GlcNAc-alkyl 

GlcNAc-alkyl (1) was synthesized by clicking an azide-modified GlcNAc (6) onto 

an alkyne-functionalized alkyl-hexaethylene glycol (7) (shown in Figure 3.2). The azide-

modified GlcNAc (6) was synthesized by functionalizing the anomeric carbon of GlcNAc 

(2) in three steps. Briefly, the hydroxyl groups of GlcNAc were protected with acetic 

anhydride in pyridine, generating (3). The anomeric acetyl of (3) was activated with lewis 

acid to form the oxazoline donor, and then coupled with azido-propanol, using TMSOTf 

as the catalyst to afford the desired derivative (6). The final product GlcNAc-alkyl (1) was 
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synthesized by clicking the GlcNAc (6) onto the alkyl-hexaethylene glycol (7) in presence 

of catalyst copper(I) bromide, followed by deacetylation. The identities of final and 

intermediate species were confirmed by 1H- and 13C-nuclear magnetic resonance (NMR) 

and mass spectrometry. Compound (1) 1H-NMR (400 MHz, CDCl3): δ (parts per million 

(ppm)) 7.57(s, 1H, triazole), 4.94 (t, 1H, J = 8.8 Hz), 4.56 (m, 2H), 4.48 (m, 1H), 4.36-

4.33 (m, 2H), 4.14-4.12 (m, 2H), 3.77-3.57 (m, 26H), 3.25 (m, 2H ), 3.30 (m, 2H), 2.07 

(m, 2H), 1.98 (s, 3H), 1.40 (m, 2H), 1.22-1.13 (m, 31H). 13C-NMR (100 MHz, CDCl3): δ 

(ppm) 173.8, 156.4, 145.1, 123.5, 101.2, 76.7, 75.7, 70.7, 70.5, 70.4, 70.3, 69.7, 65.2, 

64.5, 63.6, 61.6, 56.6, 53.4, 46.6, 41.0, 31.9, 30.1, 29.9, 29.7, 29.6, 29.5, 29.3, 29.2, 

26.7, 23.3, 22.7, 14.1. High resolution mass spectra (HRMS) fast atom bombardment 

(FAB): mass/charge (m/z) calculated for C43H81N5O14 [M+Na]+: 914.6, found: 914.6.  

 
 
 

 

Figure 3.2. Synthetic scheme of GlcNAc-alkyl. A facile and scalable eight-step process is 
followed to produce the tethering and targeting compound GlcNAc-alkyl. During nanoparticle 
production, the hydrophobic alkyl chain associates with the polymeric particle and the hydrophilic 
carbohydrate headgroup is free to interact with CMs. 
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3.2.2 PCADK synthesis 

PCADK was synthesized as previously described.30 Briefly, 2,2-

dimethoxypropane was reacted with 1,4-cyclohexanedimethanol in an acetal exchange 

reaction in distilled benzene at 100°C with p-toluenesulphonic acid as the polymerization 

catalyst. 2,2-dimethoxypropane was supplied to the reaction in an equimolar ratio to 1,4-

cyclohexanedimethanol. To compensate for the loss of benzene and 2,2-

dimethoxypropane through distillation, additional amounts were added every two hours. 

At 8 hr, a small amount of triethylamine was added to the reaction vessel to stop the 

reaction. Adding this reaction mixture dropwise to cold hexanes (-20°C) precipitated out 

the polymer, which was then removed by vacuum filtration and dried prior to particle 

formation.  

3.2.3 Particle production 

Polyketal particles loaded with rhodamine B (Sigma-Aldrich) (PK-GlcNAc-

rhodamine) were prepared via a solvent displacement method. Briefly, a solution of 40 

mg PCADK and 0.2 mg Rhodamine B in 8 mL tetrahydrofuran was added dropwise into 

a vigorously stirred aqueous solution of 1% GlcNAc-alkyl. The resulting stirred 

suspension was vented for 6h to allow for evaporation of solvent. 

Polyketal particles loaded with 5-chloromethylfluorescein diacetate (CMFDA) 

(Invitrogen) (PK-GlcNAc-CMFDA), (9'-(4-(and 5)-chloromethyl-2-carboxyphenyl)-7'-

chloro-6'-oxo-1,2,2,4-tetramethyl-1,2-dihydropyrido[2',3'-6]xanthene (Invitrogen) (PK-

GlcNAc-CMRA), or SB239063 (Axxora) (PK-GlcNAC-SB) were generated using an 

emulsion-solvent evaporation technique. Fifty mg of PCADK and cargo (0.25 mg 

CMFDA, 100 µg CMRA, or 0.5 mg SB239063) were dissolved in 1 mL of 

dichloromethane. The polymer solution was then added to 7 mL of 5% polyvinyl alcohol 

(PVA) and 5 mg GlcNAc-alkyl (or 0.5 mg GlcNAc-alkyl for 1% decoration of PK-GlcNAc-
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CMFDA particles), homogenized at high speed for 60s, and sonicated for 30s to produce 

nanoparticles. The resulting emulsion was transferred to 30 mL of 0.5% PVA and stirred 

at approximately 100 rpm for 4h to allow for evaporation of solvent. All of the particle 

suspensions were then centrifuged and washed with deionized water three times to 

remove residual PVA and GlcNAc-alkyl, as well as non-encapsulated cargo. The 

suspension was then snap frozen in liquid nitrogen and lyophilized to produce a free 

flowing powder. 

3.2.4 Particle characterization 

Particles were sized by a Wyatt DynaPro Nanostar dynamic light scattering 

(DLS) instrument (Wyatt Technology) and imaged by a Zeiss Ultra 60 scanning electron 

microscope (SEM). Nanoparticle circumferences were traced using ImageJ software to 

confirm DLS-determined sizes. Zeta potentials of particles in phosphate buffered saline 

(PBS) buffer (pH 7.4) were measured by a Malvern Instruments Zetasizer.  

To determine cargo content, loaded and non-loaded particles were hydrolyzed 

overnight in 1 N HCl. Quadruplicates of 1 mg each of CMFDA-loaded nanoparticles (0%, 

1%, and 10% decorated PK-GlcNAc-CMFDA particles) were hydrolyzed in 100 mL HCl 

at 80°C for 3h. To activate CMFDA fluorescence, 200 mL Ba(OH)2 was added to each 

sample heated at 80°C for 3h. Following neutralization with 10x PBS, solutions were 

snap frozen in liquid N2 and lyophilized to concentrate CMFDA. All readings were 

performed in 100 mL PBS, and fluorescence determined via plate reader 

(excitation/emission (exc/emi) = 492/517 nm) (BioTek Synergy 2) and loading amount 

calculated from a standard curve generated using free CMFDA (r2=0.99). The 

absorbance of resultant solutions containing SB239063 was measured at 320 nm and 

loading efficiencies calculated from a standard curve generated using free SB239063 

(r2=0.99). 
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Degree of decoration was measured by first hydrolyzing 5 mg of PK-GlcNAc 

(with a theoretical decoration of 10% and 1%) and PK particles (in triplicate) in 1 N HCl, 

followed by neutralization with NaOH. The absorbance of the resulting solutions was 

measured at 278 nm in a plate reader and wt% decoration calculated from a standard 

curve generated from free GlcNAc-alkyl (r2=0.99). GlcNac-alkyl decoration was 

orthogonally confirmed by analyzing molecular species by electrospray ionization mass 

spectrometry. 

3.2.5 SB release characterization 

2 mg of PK-GlcNAc-SB and PK-GlcNAc particles in triplicate were suspended 1 

mL PBS (pH 7.4) and set on an inverting rotator (0.25 Hz) at 37°C. At specified 

timepoints, suspensions were spun at 13.3 rpm for 5 min to pellet particles and 100 µL 

supernatant removed for analysis. 100 µL fresh PBS was added to compensate and 

particles resuspended. The absorbance of the samples was measured at 320 nm and 

concentration calculated from a standard curve of free SB239063 (r2=0.99). At the end of 

the experiment, the particles were hydrolyzed to determine the amount of remaining 

SB239063, and a release curve was generated accounting for amount of SB239063 

released from and remaining in particles. 

3.2.6 CM isolation 

CMs were isolated from day-old Sprague Dawley rat pups as previously 

described 24, 31. Briefly, excised rat hearts were washed with Hank’s Balanced Salt 

Solution (HBSS) and minced, followed by extracellular matrix digestion in 1 mg/mL 

trypsin solution in a rotating shaker at 4°C for 6h. Following centrifugation, the 

supernatant was removed and pellet re-suspended in 0.8 mg/mL collagenase solution. 

The suspension was incubated at 37°C for 10 min and filtered through 70 mm syringe 

filter. To remove vascular smooth muscle cells and endothelial cells, the suspension was 
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plated for 1h in fibronectin-coated T75 flasks. The non-adherent cells were removed and 

plated in fibronectin-coated 6- or 12-well plates in antibiotic-supplemented Dulbecco's 

Modified Eagle Medium (DMEM) media (10% fetal bovine serum (FBS)). Twelve hours 

before treatment, cells were quiesced in serum-free media. 

3.2.7 Imaging of rhodamine-loaded particles in cells 

A 0.5 mg/ml particle suspension of rhodamine-loaded, GlcNAc-decorated 

particles in serum-free DMEM media was added to quiesced CMs. After incubation at 

37°C for 12h, cells were washed three times with PBS and cells fixed in 4% 

paraformaldehyde (PFA). Following membrane permeabilization, immunostaining was 

performed with mouse anti-α-actinin (Sigma-Aldrich) and 4',6-diamidino-2-phenylindole 

(DAPI) to stain nuclei. Cells were imaged with a Zeiss 510 META confocal laser 

scanning microscope. 

3.2.8 Determining uptake of CMFDA-loaded particles in cells 

A 0.5 mg/ml suspension of CMFDA-loaded or non-loaded particles with varied 

levels of GlcNAc decoration was prepared in serum-free DMEM media and added to 

quiesced CMs. Following incubation at 37°C for 12h, fluorescence of cells was 

measured by plate reader (exc/emi = 492/517 nm). 

3.2.9 Treatment of CMs with PK-GlcNAc-SB 

Quiesced cells were incubated with 0.5 mg/mL of PK-GlcNAc-SB or PK-GlcNAc 

particles in serum-free DMEM at 37°C for 18h, followed by stimulation with TNF-α (10 

mg/mL) 20 min. Cells were harvested in lysis buffer with protease and phosphatase 

inhibitors. Western analysis for p38 activation was performed on 35 µg of protein lysate. 

Following SDS-PAGE separation, proteins were transferred to a nitrocellulose 
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membrane and probed with antibodies against phosphorylated or total p38 (Cell 

Signaling).  

3.2.10 Animal studies  

Randomized and blinded studies were conducted using adult male Sprague-

Dawley rats (obtained from Charles River) weighing 250 g. Rats were subjected to IR 

injury as described previously.159 Briefly, under isoflurane anesthesia (1-3%), the left 

anterior descending coronary artery was occluded for 30 minutes using an 8-0 prolene 

suture. Following occlusion, reperfusion was initiated by removal of the suture and 

animals were divided into treatment groups. Particle suspension treatments were given 

in 100 mL of sterile saline into the perimeter of cyanotic ischemic zone (3 locations) 

through a 30-gauge needle immediately after reperfusion. The survival rate of animals 

during surgery was 80%, and 100% during recovery. All animal studies were approved 

by Emory University Institutional Animal Care and Use Committee. 

To examine in vivo uptake of particles, rats were divided into three treatment 

groups: saline alone, PK-CMRA, and PK-GlcNAc-CMRA (n=3 for each group). Three 

days following IR and treatment, rats were sacrificed and hearts excised. After 

preservation in Optimal Cutting Temperature (OCT) compound (Tissue-Tek), hearts 

were sectioned into 7 µm thick slices and immunostaining performed with anti-α-actinin 

(Sigma-Aldrich) and DAPI to stain nuclei. Tissues were imaged with a Zeiss 510 META 

confocal laser scanning microscope (CMRA exc/emi = 548/576 nm). 

 In vivo reduction of apoptotic events was explored by dividing the rats into three 

treatment groups: saline alone, empty PK-GlcNAc, and PK-GlcNAc-SB (n=3 for each 

group). One day following IR and treatment, rats were sacrificed and hearts excised. 

After cryopreservation in OCT compound, hearts were sectioned and subject to 

immunostaining for α-actinin and DAPI. Tissues were subject to Terminal 
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deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in situ apoptosis detection, 

tetramethylrhodamine (TMR) red (Roche) to stain for apoptotic nuclei and imaged with a 

Zeiss Axioskop microscope. Using Image-Pro Plus software (MediaCybernetics), 

apoptotic and total nuclei were tallied and extent of apoptosis calculated for each 

treatment group. 

For structural and functional experiments, rats were split into three groups: saline 

alone, PK-GlcNAc, and PK-GlcNAc-SB (n>7 for each group, N=29 total). Additionally, 

some animals received sham surgery. Echocardiography was performed three days 

following surgery. The animals were sacrificed and immediately perfused for infarct size 

measurements. 

3.2.11 Echocardiography 

Rats were anesthetized with inhaled isoflurane (1-3%; Piramal) and subjected to 

echocardiography 3 days after IR surgery. Short axis values of left ventricular end 

systolic and end diastolic dimension were obtained using a Vevo® 770 echocardiography 

workstation with a high frequency transducer. An average of 3 consecutive cardiac 

cycles was used for each measurement and was made 3 times in an investigator-blinded 

manner. 

3.2.12 Infarct size 

Three days following IR, animals were sacrificed and isolated hearts perfused at 

37°C retrograde through the aorta with Krebs-Hepes buffer. The coronary artery was 

then re-occluded with the suture that was left in place at the time of reperfusion and the 

heart was perfused with filtered Evan’s blue dye to define the LV area at risk. The LV 

was sliced into cross-sections followed by 2 min soaking in 1% 2,3,5-triphenyltetrazolium 

chloride (TTC) solution at 37°C to stain viable myocardium, followed by fixing in 4% PFA. 

Each section was photographed for analysis. Non-infarcted tissue (region outside the 
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ligated area) was identified by deep blue staining, ischemic but viable myocardium was 

identified by deep red staining (at-risk area), and non-viable LV tissue was identified by 

white coloration. ImageJ software was used to trace the three areas in all sections. The 

areas of the three regions from all slices were summed for each heart and data were 

expressed as infarct size/area-at-risk (IS/AAR). 

3.2.13 Statistics 

All statistics were performed using GraphPad Prism software.  

3.3 Results 

3.3.1 CM internalization of PK-GlcNAc-rhodamine nanoparticles 

Cultured CMs harvested from day-old Sprague-Dawley rat pups were incubated 

with rhodamine-loaded, GlcNAc-decorated particles prepared by a solvent displacement 

method. Particles were imaged by SEM and analyzed by ImageJ software and had an 

average diameter of 320±156 nm (mean+SD; Figure 3.3 a). Cells were incubated with 

particles for 6h and analyzed by confocal microscopy to visualize particle uptake. To 

determine cell morphology, sections were counterstained with the cardiac-specific 

marker α-actinin (green) and images were merged to determine overlay. As 

demonstrated in the orthogonal images, rhodamine-loaded GlcNAc particles (red) were 

internalized by CMs (Figure 3.3 b). 
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Figure 3.3. Incubation of CMs with PK-GlcNAc-rhodamine particles for internalization 
verification. A) Rhodamine-loaded particles (diameter = 320 ± 156 nm) were decorated with 
GlcNac-alkyl and imaged by SEM. B) Cultured CMs were treated with PK-GlcNAc-rhodamine 
particles for 12 h before fixation in PFA and immunostaining for CM-specific α-actinin (green) and 
DAPI for nuclei (blue). Confocal microscopy afforded orthogonal views of the cell, by which 
internalized nanoparticles (red) can be observed in the same plane as the α-actinin (arrows). 

 
 
 

3.3.2 CM internalization of PK-GlcNAc-CMFDA nanoparticles in vitro 

To further demonstrate particle internalization, GlcNAc-decorated (0%, 0.6%, 9% 

as determined experimentally) CMFDA-loaded nanoparticles were prepared via a single 

emulsion method. Following hydrolysis of particle samples and fluorescence activation, 

average CMFDA encapsulations were determined by plate reader to be 2.9, 5.1, and 4.3 

nmol CMFDA/mg particle for 0%, 0.6%, and 9% sugar decoration, respectively (Figure 

3.4 a). 

The fluorescence of cultured CMs treated with CMFDA-loaded nanoparticles for 

12h was determined by plate reader and normalized to the 0% GlcNAc particles and the 

respective particle CMFDA content. Cells treated with 0.6% GlcNAc decorated particles 

exhibited a 1.4±0.1-fold increase in fluorescence, whereas treatment with 9% GlcNAc 

particles resulted in a significant 2.8±0.1-fold increase in fluorescence over cells treated 

with CMFDA-loaded, non-decorated particles (mean±SEM; n=4; *p<0.01, ***p<0.001. 

analysis of variance (ANOVA); Figure 3.4 b). 
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Figure 3.4. Measurement of particle internalization by CMFDA fluorescence demonstrating 
increased uptake. PK-GlcNAc-CMFDA nanoparticles were decorated with 0%, 0.6%, or 9% 
GlcNAc-alkyl by weight and loaded with the cell tracker dye, 5-CMFDA. A) Particles are closely 
load-matched for CMFDA content: 0%, 0.6%, and 9% decorated particles contained 2.9 ± 0.3, 5.1 
± 1.5, and 4.3 ± 0.2 nmol CMFDA/mg particle, respectively. Data are expressed as mean±SEM 
from three experiments. B) After incubation of CMs with particles, fluorescence of cell culture was 
obtained by a plate reader and normalized to 0% GlcNAc-alkyl decoration and respective particle 
CMFDA content. The positive correlation between fluorescence and degree of decoration 
indicates a dose response and confirms cell uptake of GlcNAc-decorated particles. Data are 
expressed as mean ± SEM from four separate experiments (*p < 0.05, ***p < 0.001; ANOVA 
followed by Newman–Keuls post test). 

 
 
 

3.3.3 In vitro inhibition of p38 activation 

PK-GlcNAc-SB and PK-GlcNAc particles were prepared by a single emulsion 

method and had a mean diameter of 370 nm by SEM image analysis and DLS (Figure 

3.5 a&b). A cumulative release curve of SB239063 from PK-GlcNAc-SB particles was 

generated, with 24% released by day 5 in a 2 mg/mL suspension (Figure 3.5 c).  

To evaluate in vitro particle internalization, CMs were pretreated with serum free 

media alone or particles for 18h and stimulated with TNF-α (10 mg/mL) for 20 minutes. 

Proteins were run on SDS-PAGE gel and membranes were stained for both 

phosphorylated and total p38 levels. Band densities were calculated by Carestream 

Health Imaging software. The amount of p38 phosphorylation (p-p38) was normalized to 

total p38 for each treatment (Figure 3.5 d). TNF-α stimulation significantly increased p-

p38 over basal levels in PK-GlcNAc pretreated CMs (0.7±0.1 to 1.8±0.2), but not in the 
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PK-GlcNAc-SB pretreated cells. Additionally, the amount of TNF-a-stimulated p-p38 was 

significantly decreased in PK-GlcNAc-SB cells compared with PK-GlcNAc pretreatment 

(1.8±0.2 vs. 0.7±0.3; mean+SEM; n=3; p<0.05; ANOVA followed by Tukey post-test). 

 
 
 

 

Figure 3.5. Treatment of CMs in vitro with p38 inhibitor-loaded nanoparticles reduces TNF-
α-stimulated p38 activation. PK-GlcNAc and PK-GlcNAc-SB particles were imaged via a SEM 
(diameter = 407 ± 125 nm or diameter = 342 ± 165 nm, respectively) and b) analyzed by DLS 
(diameter = 465 ± 173 nm or diameter = 395 ± 145 nm, respectively). Data are mean ± SD. C) 
PK-GlcNAc-SB particles release cargo through diffusion at pH 7.4. D) PK-GlcNAc did not prevent 
p38 phosphorylation, as demonstrated by a 2.4-fold increase of p-p38 due to TNF-α treatment. 
However, PK-GlcNAc-SB treatment significantly inhibited p38 activation compared with empty 
particles. Data are mean ± SEM and are expressed as a ratio of phosphorylated to total p38 (n = 
3; *p < 0.05; ANOVA followed by Tukey’s post test). 
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3.3.4 In vivo uptake of PK-GlcNAc-CMRA particles and apoptotic inhibition by PK-

GlcNAc-SB particles 

To examine the ability of the GlcNac-decorated particles to be internalized in vivo, 

a blinded and randomized model of IR injury was used. Following 30 minutes of 

ischemia, the LV was reperfused and rats received injections of saline, PK-CMRA 

(average diameter=443 nm), or PK-GlcNAc-CMRA (average diameter=453 nm) particles 

in a randomized and blinded manner (n=3 for each group). Three days following IR, 

animals were sacrificed and hearts excised, snap frozen in OCT compound, and 

sectioned. Using immunohistochemistry, CMs were identifiable by α-sarcomeric actinin 

staining (green). CMRA-positive cells were identified by red fluorescence, and 

representative co-localization images are shown in Figure 3.6 a. Qualitative data from 

the images suggest efficient in vivo uptake of PK-GlcNAc-CMRA with little staining in 

PK-CMRA treated animals. 

 
 
 



www.manaraa.com

 47 

 

Figure 3.6. GlcNAc decoration enhances particle uptake in vivo following IR and reduces 
apoptotic events. A) Rats that received myocardial injection of (9’-(4-(and 5)-chloromethyl-2-
carboxyphenyl)-7’-chloro-6’-oxo-1,2,2,4-tetramethyl-1,2-dihydropyrido[2’,3’-6]xanthene) (CMRA)-
loaded GlcNAc-decorated particles (PK-GlcNAc-CMRA) immediately following IR exhibited a 
greater CMRA fluorescence 3 days post-IR than animals that had received PK-CMRA particles, 
indicating enhanced in vivo uptake due to GlcNAc decoration. B), C) Immediately following IR, 
particles were injected intramyocardially and hearts removed 1 day post-IR. TUNEL staining 
indicated apoptotic nuclei (b) (apoptotic nuclei [purple] indicated by arrow, non-apoptotic nuclei 
[blue] indicated by triangle), and comparison against total CM nuclei indicated that animals that 
received PK-GlcNAc-SB particle injections achieved 3.6-fold fewer apoptotic events in the injured 
myocardium compared to IR and 2.7-fold fewer than the PK-GlcNAc group (c) (n = 3 for each 
group). Data are mean ± SEM. **p < 0.05, *p < 0.01. ANOVA followed by Newman–Keuls post 
test. 

 

 
 

After establishing that GlcNAc-decorated particles are internalized by CMs in vivo, 

we sought to evaluate the anti-apoptotic effect of PK-GlcNAc-SB particles in vivo in a 

randomized and blinded manner. Using the IR rat model, we injected saline, PK-GlcNac, 

and PK-GlcNAc-SB particles (n=3 for each group) into the border zones of the LV as 

described in the methods. Twenty-four hours following IR, the rats were sacrificed, and 

TUNEL staining was performed for identification of the apoptotic nuclei (purple color; 
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Figure 3.6 b) of a-sarcomeric actinin-positive cells (green). The number of apoptotic CMs 

for each treatment group was determined and expressed as a percent of total CMs 

counted. We found that delivery of PK-GlcNAc-SB particles to the heart significantly 

reduced the percentage of apoptotic myocytes in the infarcted area as identified by 

TUNEL staining (Figure 3.6 b). In saline-only and PK-GlcNAc treated rats, 83%±14% 

and 64%±4% of CMs counted were TUNEL-positive (Figure 3.6 c). However, a 

significantly lower number of apoptotic CMs were counted in hearts treated with PK-

GlcNAc-SB particles (23%±6%) (*p<0.05 and **p<0.01; ANOVA followed by Newman-

Keuls post-test). Taken together, these data suggest that GlcNAc decoration of particles 

enhanced CM uptake in vivo, and delivered anti-apoptotic signals following IR. 

3.3.5 In vivo cardiac function 

We next sought to determine the ability of the SB-loaded particles to rescue rats 

from acute cardiac dysfunction. Following 30 minutes of ischemia, the LV was 

reperfused and rats received injections of saline, PK-GlcNAc, or PK-GlcNAc-SB particles 

in a randomized and blinded manner. Three days following IR, rats were subjected to 

small animal echocardiography (n=4 for sham, n>7), prior to determination of infarct size 

using TTC staining. Saline treated rats had an infarct size/area-at-risk (IS/AAR) of 

43.7%±5.6% (Figure 3.7 a). While no significant difference was seen in rats that 

received PK-GlcNAc particle injection post-IR (IS/AAR = 49.4%±3.1%), rats that 

received PK-GlcNAc-SB particles had a significant reduction in IS/AAR (28.4%±3.2%; 

p<0.05 vs. IR and p<0.01 vs. PK-GlcNAc; ANOVA). 
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Figure 3.7. Infarct size reduction and functional improvements seen in PK-GlcNAc-SB 
treatment following ischemia–reperfusion injury. Immediately following IR, particles were 
injected directly into the injured myocardium. Three days following surgery, echocardiography 
was performed and heart cross sections analyzed for infarct size. A) The ratio of infarct size to 
area at risk was calculated for the treatment groups. PK-GlcNAc treatment had no significant 
effect, but PK-GlcNAc-SB treatment significantly decreased infarct size compared to both 
treatment groups (mean ± SEM, n = 5; *p < 0.05, **p < 0.01; ANOVA followed by Newman–Keuls 
multiple comparison post test). B) Fractional shortening calculated from echocardiographic 
measurements demonstrated a significant decrease in function in IR animals compared to sham. 
There was no significant improvement seen with PK-GlcNAc, though PK-GlcNAc-SB treatment 
improved function compared with other IR groups (n = 4 for sham n > 7 for IR groups). Data are 
mean ± SEM. *p < 0.05, ***p < 0.001. ANOVA followed by Tukey’s post test. 

 
 
 

To determine functional changes, left ventricular diameters were measured at 

peak systole and diastole to determine fractional area of shortening (n=5). Sham-

operated rats had a fractional shortening (FS) of 50.5%±0.9% that was significantly 

lower in IR animals (39.6%±0.7%; p<0.05; ANOVA) (Figure 3.7 b). While no significant 

increase was seen in PK-GlcNAc treated rats (38.6%±1.7%), treatment with PK-GlcNAc-

SB significantly improved FS (44.4%±1.2%; p<0.05 vs. IR, p<0.05 vs. PK-GlcNAc; 

ANOVA). Taken together, these data demonstrate a positive effect of PK-GlcNAc-SB on 

cardiac function following IR. 

3.4 Discussion 

Apoptosis of CMs following IR is suggested to be the dominant cause of chronic 

heart failure,6, 148 but despite the existence of molecules with the potential to inhibit 
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apoptotic pathways, development of vehicles for intracellular drug delivery into CMs 

remains a large challenge for post-MI healing. Systems exist for sustained extracellular 

release of therapeutic molecules or that act through phagocytic cells, such as 

macrophages. However, potential therapeutics that act intracellularly are precluded from 

existing systems due to their inability to transmigrate cell membranes. Previous studies 

discovered that CMs bind to and internalize GlcNAc, providing a compelling targeting 

agent in CM-targeting drug delivery systems.24 The researchers delivered pravastatin (a 

3-hydroxy-3-methylglutaryl-CoA reductase inhibitor)-loaded GlcNAc-decorated 

liposomes to CMs and following stimulation with interleukin-1β, showed enhanced nitric 

oxide production and inducible nitric oxide synthase expression. However, the studies 

were limited to in vitro experiments and relied on liposomal vehicles, which are known to 

be unstable and leak water-soluble contents.158 In our approach, we decorated acid-

sensitive nanoparticles with GlcNAc and validated our delivery system both in vitro and 

in vivo. Our preliminary findings implicate GlcNAc-decorated nanoparticles as a novel 

method of delivering therapeutic molecules to CMs to heal the post-infarct heart. 

In our studies, we synthesized a targeting molecule consisting of GlcNAc 

tethered to an alkyl chain via a PEG linker. This was completed in a facile 8-step 

process with inexpensive materials. The reactions were conducted at the gram scale, 

but are scalable to kilogram quantities, allowing for larger production applications. 

Through hydrophobic interactions, the hydrophobic tail associated with the polymeric 

particle, allowing for the more hydrophilic sugar head group to partition into the aqueous 

phase to interact with CMs. In fact, this proposed particle-GlcNAc-alkyl interaction 

proved effective in decorating particles: in initial formulations of 10% and 1% by weight 

GlcNAc-alkyl to PCADK, the actual degree of decoration was 9 wt% and 0.6 wt%, 

respectively. This decoration of hydrophobic polymeric particles with hydrophilic GlcNAc 

increased the zeta potential from -8.97 mV (0% decoration) to -3.39 mV (9% decoration). 
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We have used this strategy in prior studies to bind large proteins to the outside of 

microparticles. Additionally, this strategy is not all that uncommon and is used to surface 

modify hydrophobic polymers with hydrophilic molecules.31, 160 The polymer was 

composed of the polyketal PCADK that degrades in acidic environments, such as in the 

developing endosome. The byproducts are biocompatible (acetone is on the generally 

regarded as safe (GRAS) list and 1,4-cyclohexanedimethanol is Food & Drug 

Administration (FDA) approved as an indirect food additive and has an excellent animal 

toxicity profile30) and PCADK particles have been shown to neither incite the 

inflammatory response nor induce cell death.32 We are able to routinely produce 

nanoparticles ranging in size from 200 to 800 nm, which is small enough to allow for cell 

internalization and large enough to avoid being flushed from the injured myocardium.  

To initially demonstrate enhanced cellular uptake due to GlcNAc-decoration, 

particles were loaded with rhodamine B and incubated with CMs. Confocal images taken 

12 hr later presented evidence of particle internalization wherein red nanoparticles were 

positioned within cells, visible within orthogonal frames. However, to more quantifiably 

determine internalization, we produced size- and load-matched particles with 0%, 1%, or 

10% GlcNAc-alkyl decoration that contained the cell tracker dye CMFDA. The dye is 

non-fluorescent until activated by intracellular esterases and becomes cell impermeant 

by reaction with glutathione, thus fluorescence should only been seen when the CMFDA 

is released from the particles into the cell. To account for any CMFDA release from non-

internalized particles, we normalized fluorescent readings to non-GlcNAc decorated 

CMFDA-loaded particle treatment. This approach allowed us to attribute fluorescence 

increase only with internalized particles. By comparing against the 0% decoration control, 

we saw a significant increase in fluorescence at 10% GlcNAc decoration, which 

confirmed that increasing GlcNAc decoration enhanced cellular uptake. While particle 

hydrolysis is possible outside the cell, which would allow release of the cell permeable 
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CMFDA in the media, our published studies would argue against that. The hydrolysis 

half-life of PCADK polymer at pH 7.4 was four years in serum-free media,30 and thus it 

was unlikely that significant amounts of the hydrophobic CMFDA were released into the 

media. Furthermore, we examined release of CMFDA over 12 hr in cell free conditions 

and found no differences between the different particle preparations. The positive trend 

between degree of GlcNAc decoration and fluorescence increase implicates varying 

GlcNAc decoration to tune internalization kinetics, though more data points are needed. 

Moreover, it was suggested in prior studies that oligosaccharide decoration may also 

enhance uptake, setting the stage for a multi-sugar decorated particle to alter cell 

specificity.25 We did not explore the mechanism for GlcNAc internalization, but findings 

from a recent study indicate that the intermediate filaments vimentin and desmin 

possess lectin-like domains on the cell surface that bind to and internalize GlcNAc.25 

Although vimentin and desmin are not unique to CMs, they are enriched in muscle 

cells161 and gene knockouts demonstrate negative cardiac phenotypes.162 

The MAPK p38 is known to be a key regulator of apoptotic pathways and is 

triggered by IR.163-165 While our prior studies confirmed that PCADK was able to deliver 

therapeutics to macrophages, significant activation of p38 in CMs leads to apoptosis, 

activation of inflammatory genes, and stimulation of pro-fibrotic factors. Previously, we 

incubated CMs with SB239063-loaded non-decorated PCADK particles and analyzed 

TNF-stimulated p38 activation at several time points. We found no significant decrease 

in activated p38 when comparing inhibitor loaded and empty PCADK particles up to 6 hr, 

indicating that CMs internalized little non-sugar decorated particle, correlating with our 

current study using CMFDA. As our CMFDA data demonstrated significant uptake at 18 

hr, we used this time point to determine efficacy of our inhibitor-loaded GlcNAc particles. 

After 18 hr of incubation with PK-GlcNAc or PK-GlcNAc-SB, we examined kinase activity 

by measuring TNF-a-stimulated p38 phosphorylation. We found that while PK-GlcNAc 
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(empty particle) treatment did not prevent p38 activation by TNF-a, treatment with PK-

GlcNAc-SB did prevent this activation, suggesting internalization of particles and release 

of the inhibitor. Additionally, p38 activation was verified through a no particle control 

treatment, with a 1.8-fold increase in p-p38 due to TNF-a treatment. The delivery of 

SB239063 to cells via non-internalization means (i.e. extracellular release) in the acute 

phase is relatively low; our release curve indicates that only up to 13% of SB239063 

may be released outside cells at pH 7.4 within three days. Though the current study only 

examined a small molecule p38 inhibitor, we have demonstrated the ability of PCADK 

particles to encapsulate a broad range of compounds from siRNA to proteins, and future 

work will determine whether these cell impermeant factors can also be delivered 

intracellularly to CMs. 

To evaluate the applicability of our GlcNAc-decorated nanoparticle as a drug 

delivery system to CMs in vivo, we first examined the enhanced uptake of GlcNAc-

decorated particles and then the anti-apoptotic effect of PK-GlcNAc-SB particles before 

assessing functional responses. We injected a saline particle suspension into the 

myocardium immediately following IR and evaluated cardiac function and structure in the 

acute temporal window. Although injection of small molecule therapeutics would be 

possible in a clinical setting, small molecules are cleared quickly from the well-perfused 

heart. We examined direct particle injection to the myocardium as intramyocardial 

injections in humans has been performed for cell therapy applications and is considered 

safe.166-168 Although signaling cascades persist for weeks following MI and therapeutic 

treatments would benefit from sustained delivery, acute therapies are also needed. Our 

published data demonstrated that sustained inhibition of p38 by particles in vivo had a 

chronic—but little acute—benefit. Therefore we hypothesized that delivery of particles 

with enhanced CM uptake would improve acute myocyte survival. We qualitatively found 

that more CMs internalized CMRA-loaded particles due to GlcNAc decoration, validating 
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in vivo applicability of this delivery system. Furthermore, the anti-apoptotic effect of PK-

GlcNAc-SB particles was successfully demonstrated in vivo following IR through the use 

of TUNEL staining: a 3.6-fold decrease in apoptotic CMs was observed due to PK-

GlcNAc-SB treatment from the saline-only treatment. While the levels of TUNEL-positive 

cells in our studies seem rather high, it is important to note that much of our 

measurement comes from the border zones as that is where therapy was introduced. A 

more thorough study of apoptosis is underway. 

In the structural response of rat model, no significant reduction in infarct size was 

seen between IR and PK-GlcNAc treatments, indicating no benefit of the empty sugar 

particle. However, delivering PK-GlcNAc-SB particles to the injured myocardium 

significantly decreased infarct by 35% from IR animals, indicating improved myocyte 

survival. While CM survival was not directly measured via cellular markers, infarct size is 

a well-known indicator of CM damage. This protective effect of PK-GlcNAc-SB was not 

only seen on infarct size, but cardiac function as well. Our data demonstrated significant 

decreases in FS in IR and PK-GlcNAc groups as compared with sham-operated animals. 

However, PK-GlcNAc-SB particle treatment restored nearly 50% of lost function over IR 

levels. While this was not restored to sham levels, the improvement was significant and 

indicates a functional benefit of GlcNAc-decorated particles loaded with a p38 inhibitor. 

We did not directly compare with non-decorated, inhibitor-loaded particles in our 

current study because it was unnecessary to duplicate negative data we previously 

produced utilizing animal studies.32 In that study, rats that received the p38-loaded 

inhibitor in PCADK particles had FS values similar to empty GlcNAc particle- and saline-

treated IR rats (below 40%). Statistical comparison indicated no significant differences 

between those treatments, and PK-GlcNAc-SB was significantly improved over PCADK-

SB particles, despite it being a separate study. It is important to note that we did not 

examine long-term function in this study, and the effect of sugar decoration on particle 
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efficacy in the chronic phase is unknown. As our prior barrier was lack of efficacy during 

the acute phase, we only examined this time point. One would hypothesize that 

increasing CM uptake would lead to a rapid depletion of drug-loaded nanoparticles 

available in the myocardium. While some studies suggest that inhibiting early apoptosis 

is critical for long-term function,169, 170 our prior studies with encapsulated SOD suggest 

that inhibition of apoptosis alone may not be sufficient for long-term improvements.159 

Thus, the optimal therapy may involve a mixture of decorated and non-decorated 

nanoparticles to target both phases of post-MI cardiac dysfunction. In future studies, we 

will determine the long-term benefit of PK-GlcNAc-SB treatment and determine whether 

this early rescue of function leads to long-term improvements; or if combination with 

PCADK-SB particles that chronically inhibited p38 in macrophages gives a synergistic 

effect. Finally, despite the fact that GlcNAc glycosylation of proteins improves function of 

CMs and may play a role in the response following infarction,171 we saw no beneficial 

effect of empty PK-GlcNAc particles. The studies demonstrating a critical role for this 

sugar did so by altering the activity or expression of the enzyme O-GlcNAc transferase 

(OGT). Thus the potential exists for the empty PK-GlcNAc particles to possess 

bioactivity in the setting of altered OGT activity. While not explored in our studies, 

encapsulation of OGT within PK-GlcNAc nanoparticles could have therapeutic potential. 

In summary, our work172 demonstrates that GlcNAc-decorated nanoparticles can 

be effective vehicles for intracellular delivery of therapeutic molecules to CMs. As 

verified by confocal microscopy and fluorescent plate readouts, CMs effectively 

internalized dye-loaded GlcNAc-decorated particles. Additionally, we demonstrated in 

vitro therapeutic delivery of the p38 inhibitor, SB239063, to CMs and validated GlcNAc-

decorated nanoparticles as in vivo delivery vehicles by decreasing infarct size and 

restoring cardiac function. The lack of uptake of some molecules by non-phagocytic CMs, 

toxic doses required of others, and sustained temporal availability preclude systemic 
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delivery of most therapeutics as a method of treatment following MI. With the large 

scalability and non-toxic nature of the nanoparticles, as well as the ability to encapsulate 

a variety of compounds, the clinical potential is quite compelling. The proposed delivery 

system described in this study demonstrates a potential means to enrich intracellular 

therapeutics within CMs, providing a novel vehicle for treatment for acute myocardial 

function and possible prevention of heart failure resulting from massive CM death. 
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CHAPTER 4 

DENDRIMERIC BOWTIES FEATURING HEMISPHERIC-SELECTIVE 

DECORATION OF LIGANDS FOR MICRORNA-BASED THERAPY 

 
 
 

4.1 Introduction 

The development of miR-based therapies holds exciting promise for improving 

the status quo of medicine.13 Delivery of traditional pharmaceuticals has faced significant 

limitations: protein-based therapeutics are generally restricted to extracellular receptors; 

and small-molecule drugs modulate only certain functions of their targeted protein and 

are limited in specificity. In contrast, by exploiting endogenous post-transcriptional 

mechanism by delivering synthetic miR mimics, genetic pathways can be regulated 

selectively.14 The range of miR-based pharmaceuticals is wide, with potential 

applications ranging from cancer to diabetes and heart failure. 

However, challenges exist in the development of such therapies such as 

protecting the miR molecules from ribonucleases (RNases),14 and difficulty inducing 

cellular uptake by the target cell population. RNases that are present in bodily fluids 

readily degrade miR, requiring protective measures, such as encapsulation of the miR26 

or the use of chemically modified RNA.27 The highly charged backbone and size of 

nucleic acids precludes passive cell penetration,14, 173 necessitating incorporation of a 

mechanism for cellular uptake in most cell types. Additionally, specificity in targeting 

certain cell types is generally desired in order to reduce miR uptake in unintended cells. 

Dendrimers, a class of radially symmetric, regularly branched polymers, have 

been extensively studied as delivery agents for a variety of drugs.174-176 One well studied 

dendrimer is PAMAM, which generally consists of an ethylenediamine core that is 
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reacted alternatively with methyl acrylate and ethylenediamine to form a size-tuned 

dendrimer that features amino termini.177 Traditional strategies have largely consisted of 

physical entrapment of drugs within the relatively hydrophobic dendrimer core, with 

conjugated targeting moieties distributed among the dendrimer terminal groups. As such, 

dendrimers are attractive multi-functional nanomaterials despite some side effects, such 

as cytotoxicity.36 Recent studies have extended dendrimer applications to siRNA- and 

miR-based therapeutics.37, 38, 40, 65, 176, 178, 179 The suitability of a dendrimer-based RNAi 

therapeutic lies in part with the amino groups present at the termini and within the 

dendrimer that afford electrostatic interactions with—and thereby encapsulation and 

protection of—anionic miR mimics.37 The interior amines can also provide “proton 

sponge” mechanisms for the endosomal escape of the trapped nucleic acids.179 Another 

compelling reason for dendrimer-based therapeutics is that the terminal amines can be 

readily conjugated with biomolecular ligands, which “decorate” the dendrimer with 

signals to potentially enhance cell targeting and uptake. Studies have indicated that 

varying the number of ligands on the vehicle surface elicits different binding and 

internalization kinetics, and dendrimeric materials can handily exert these “multivalent 

effects” by presenting an increased number, density, and arrangement of ligands.38-40, 180-

182 

However, previous studies in dendrimer delivery systems where ligands were 

conjugated to surface groups may have had a significant design shortcoming: greater 

ligand density may result in enhanced delivery, but as PAMAM dendrimers present a 

defined number of terminal amines, an increase in the number of terminal amines 

conjugated to ligands necessitates a decrease in the number and density of PAMAM 

terminal amines available for RNA binding. These competing uses of terminal groups 

may create an impasse in dendrimer vehicle design if the need for decorated termini 

allocates insufficient numbers of terminal groups for RNA binding, or vice versa. Thus, 
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the need exists for a new dendrimeric structure with a higher degree of spatial control 

over the surface functional regions for effective delivery of RNAi therapeutics. 

We present here the design and application of a novel multi-functional 

dendrimeric vehicle with two discrete regions: one that retains a high density of cations 

for RNA binding with the other region simultaneously presenting locally concentrated 

ligands that enhance cellular uptake. In this study, we prepared our “bowtie” dendrimer 

by coupling the cores of functionally unique reduced cystamine core PAMAM dendrimers. 

To promote binding of miR mimics, one side of the resulting dendrimeric bowtie 

consisted of one half of a generation 4 PAMAM (g4P) dendrimer, and the other side of 

the bowtie was one half of a generation 2 PAMAM dendrimer (g2P). The g2P presented 

either poly(arginine)9 (polyR)—a cell-penetrating peptide—or the peptide RGD, a 

component of the integrin-binding matrix that facilitates the cellular uptake of RGD-

bound particles. 

To demonstrate the suitability of our dendrimeric bowtie as a transfection vehicle, 

we loaded the bowties with miR-126 mimic—an important modulator of vascular integrity, 

endothelial cell proliferation, and neovascularization—and incubated the resulting 

complexes with HUVECs. Treatment with our bowties significantly enhanced cell 

proliferation and tube formation of HUVECs, and knocked down SPRED1 mRNA levels, 

a target of miR-126. 

4.2 Materials and Methods 

4.2.1 Materials 

Water was distilled and deionized at 18 MΩ resistance (Gelante Pure Water, 

Shijiazhuang, China). Peptides composed of sequences cysteine-glycine-glycine-

arginine-glycine-aspartic acid-serine (CGGRGD) and cysteine-(arginine)9 (polyR) were 

obtained from GL Biochem (Shanghai, China). GeneFinder nucleic acid dye was 
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purchased from Bio-V (Xiamen, China). 1,4-bis(maleimido)butane (BMB) coupler was 

purchased from Thermo Scientific. A HUVEC line was obtained from ScienCell, and 

daughter cells from passages under passage seven were used in in vitro experiments. 

Cells were cultured in endothelial cell medium (ECM, Cat. No. 1001, ScienCell) 

supplemented with 5% FBS (Cat. No. 0025, ScienCell), endothelial cell growth 

supplement (Cat. No. 1052, ScienCell), and penicillin/streptomycin (Cat. No. 0503, 

ScienCell). Opti-MEM reduced serum medium and Dulbecco’s phosphate buffered 

saline (DPBS) were purchased from Invitrogen. Double-stranded miR-126, non-

mammalian mRNA targeting negative control miR #22 (C. elegans miR cel-miR-239b-

59), and cy3-labeled control miR #22 mimics were synthesized by RiboBio (Guangzhou, 

China). The sequences for miR-126 mimic were 5’-UCG UAC CGU GAG UAA UAA 

UGC G dTdT-3’ (sense) and 3’-dTdT AGC ATG GCA CTC ATT ACG CAA-5’ (antisense). 

The sequences for control miR #22 were 5’-UUU GUA CUA CAC AAA AGU ACU G 

dTdT-3’ (sense) and 3’-dTdT AAA CAT GAT GTG TTT TCA TGA C-5’ (antisense). 

4.2.2 Synthesis 

Generation 4 and hydrazide-terminated generation 2 cystamine core PAMAM 

dendrimers (g4P and g2P, respectively) were prepared as previously described.180 

Peptide decoration of g2P was accomplished via the bifunctional coupler, succinimidyl-

([N-maleimido propionamido]-diethylene glycol) ester (SM(PEG)2, Thermo Scientific), 

which featured amine- and thiol-reactive termini (Figure 4.1 A). In DPBS, 0.93 mM g2P 

dendrimer and 30 mM SM(PEG)2 were reacted for 1 hour at room temperature. 

Following extensive washing in DPBS by centrifugal filtration (molecular weight cut off 

(MWCO) 3000, Millipore) to remove unreacted SM(PEG)2, RGD or polyR peptides (18 

mM final) were dissolved into reaction mixtures at a 1.2-fold excess to terminal groups. 

The reaction proceeded overnight at room temperature, followed by centrifugal filtration. 



www.manaraa.com

 61 

The modification levels of polyR or RGD on g2P was evaluated by analysis of 1H-NMR 

spectra (ARX400, Bruker, Switzerland). 

 
 
 

 

Figure 4.1. Synthesis and coupling of bowtie dendrimer. (A) Synthetic scheme for 
modification of g2P with RGD or polyR. (B) Cartoon of a synthetic scheme illustrating the coupling 
of cleaved g4P dendrons with cleaved, decorated g2P dendrons to generate dendrimeric bowties. 

 
 
 

To generate dendrimeric bowtie conjugates (Figure 4.1 B), the reducing agent 

tris(2-carboxyethyl) phosphine (TCEP, 15 mM) was added to a solution of cystamine-

core g4P (0.15 mM) in DPBS to reduce the disulfide bond within the core of the 

dendrimer. The reaction solution contained 10 mM ethylenediaminetetraacetic acid 

(EDTA) to prevent disulfide re-formation. A 10-fold molar excess BMB dissolved in 

dimethyl sulfoxide (DMSO) was then added to react with the newly generated thiols of 

the resulting dendron. The reaction was carried out for 2 hours at room temperature. The 

resulting g4P-BMB intermediate conjugate was washed by extensive centrifuge filtration 

(MWCO 3000, Millipore) to remove excess BMB. In a parallel reaction (Figure 4.1 B), the 

disulfide cores of polyR-, RGD-, and non-modified g2P were reduced with TCEP, and 

added in 20% molar excess to the activated g4P-BMB conjugate. This final coupling 
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reaction was carried out overnight. Non-reacted g2P dendron species were removed by 

extensive centrifuge filtration (MWCO 10000, Millipore). Bowtie conjugates were 

subjected to 1H-NMR analysis, and bowtie spectra were compared to the polyR- and 

RGD-g2P spectra to verify coupling. Final dendrimeric bowtie species consisted of a 

non-modified g4P dendron coupled with a g2P dendron. Specifically, “non-dec-bowtie” 

consisted of no additional modifications, but polyR- and RGD-bowties presented either 

polyR or RGD peptides on the periphery of the g2P dendron. 

4.2.3 Evaluation of reaction progression 

Reaction completion status during bowtie generation was evaluated with 

Ellman’s reagent (5,5’-dithio-bis-(2-nitrobenzoic acid), DTNB). Briefly, g4P and 

unmodified g2P were reduced with 15mM TCEP and 10 mM EDTA in DPBS to give rise 

to thiol-containing hemispheric dendrons, which were then coupled with BMB as 

described above. To monitor the coupling reaction, 2 mL samples of dendrimer reagents 

or reaction mixtures were added at prescribed time points to 198 mL of an assay 

solution composed of 0.1 mM DTNB, 2.5 mM sodium acetate, and 50 mM 

tris(hydroxymethyl)aminomethane for a final volume of 200 mL in a 96-well plate well. 

Solutions were incubated for 5 min at room temperature, after which absorbance at 412 

nm was measured by SpectraMax M2 plate reader (Molecular Devices). Free thiol 

concentration was calculated from absorbance values and used to evaluate reaction 

status.  

4.2.4 Particle sizing and zeta-potential measurement 

The sizes of complexed miR-bowtie particles were determined using DLS. 

Complexes were prepared at an N/P ratio of 2. The selected dendrimer (500 µM in 

diethylpyrocarbonate (DEPC)-treated water) and miRNA (20 µM in DEPC water) were 

mixed at 1:12.5 volume ratio (1:25 for g4P), sonicated for 5 min, and incubated at room 
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temperature for 15 min. Then complexes were diluted to 0.175 µM (miRNA 

concentration) in water. The aqueous solutions were filtered through 0.20 µm filters 

(Sartorius stedim Biotech, Goettingen, Germany) to remove the dust. All the vials used 

during the experiment were carefully washed and sterilized. 

A commercialized spectrometer from Brookhaven Instruments Corporation (BI-

200SM Goniometer) was used to perform both static light scattering (SLS) and DLS over 

a scattering angular range of 20-120°. A vertically polarized, 33 mW solid-state laser 

(Brookhaven Instruments Corporation) operating at 635 nm was used as the light source, 

and a BI-TurboCo Digital Correlator (Brookhaven Instruments Corporation) was used to 

collect and process data. For a very dilute solution, the weight-averaged molar mass and 

the root mean-square radius of gyration (Rg) can be obtained from SLS data. By using a 

Laplace inversion program, CONTIN, the normalized distribution function of the 

characteristic line width was obtained which could be further converted into the 

hydrodynamic radius Rh by using the Stokes-Einstein equation D=kBT/(6πηRg), where D, 

kB, T, η are the translational diffusive coefficient, the Boltzmann constant, the absolute 

temperature, and the viscosity of the solvent, respectively. 

The zeta-potentials of miR-bowtie complexes were measured through 

electrophoretic light scattering experiments, which were performed by a ZetaPALS zeta 

potential analyzer (Brookhaven Instruments) with the samples described above. 

4.2.5 Gel retardation analysis 

To estimate the minimum of amount of dendrimeric bowties that can form 

complexes with certain amount of miRNA, gel retardation assay was carried out to 

visually analyze the unbound miRNA. Complex solutions were prepared as described 

above, with volume ratio of dendrimers and miRNA adjusted to the corresponding N/P 

ratio varied from 0 to 1.31. The solutions were diluted to 2 µM (miRNA concentration) in 
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DEPC water, and loading buffer was added to the solutions at 1:5 ratio. Samples 

containing miR-bowtie complexes were loaded in 3% agarose gel containing 1/10000 

GeneFinder™ nucleic acid dye prepared in 0.5x tris-borate-ethylenediaminetetraacetic 

acid (TBE), and electrophoresis was carried out at 110 V in 0.5x TBE buffer (pH 8.5). 

Bands were imaged by a Tanon-1600 Gel Documentation System (Tanon, Shanghai, 

China). 

4.2.6 Fluorescent dye exclusion assay 

To quantitatively evaluate the ratio of dendrimer to miR for complete 

oligonucleotide encapsulation, miR was complexed with varying molar ratios of 

dendrimeric bowties in DEPC-treated water for 2 min. Then GeneFinder nucleic acid dye 

was added in DPBS to a final volume of 50 mL for a GeneFinder dilution of 1:10000 and 

0.2 mM miR concentration. After 5 min incubation, GeneFinder-dyed Dendrimer-miR 

solutions were transferred in triplicate to a 96-well plate. The fluorescent signals 

(excitation: 489 nm, emission: 517 nm) resulting from GeneFinder binding non-

encapsulated miR were measured by a SpectraMax M2 plate reader (Molecular 

Devices). 

4.2.7 Transfection 

For the in vitro studies, HUVECs were subjected to reverse transfection before 

any further experiments. Cells were starved for at least 6 hours in no-serum ECM, then 

seeded in collagen-coated 24-well plates together with miR-bowtie complex solution in 

Opti-MEM with 2% FBS. After incubation for 8 hours at 37°C with 5% CO2, transfection 

media was replaced by 2% FBS Opti-MEM. Complexes (N/P ratio of 1.5) were prepared 

as above, and diluted to 0.175 µM (miR concentration) in 2% FBS Opti-MEM. 
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4.2.8 qRT-PCR primer design 

The primers for quantitative real-time polymerase chain reaction (qRT-PCR) 

assay were designed by online National Center for Biotechnology Information (NCBI) 

primer designing tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/), the product length 

is set between 100-250bp. The primers for SPRED1 and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were: SPRED1 forward, 5’-GCG ACT CAG GGA CAA AAT 

GGT GGT-3’; SPRED1 reverse, 5’-TCA AAA GCC CTA GCA TCA GCA GGA C-3’; 

GAPDH forward, 5’-GGT CGT ATT GGG CGC CTG GT-3’; GAPDH reverse, 5’-TAC 

TCA GCG CCA GCA TCG CC-3’. 

4.2.9 mRNA knockdown assay 

Twenty-four hours after transfection initiation (treatment groups included g4P, 

non-dec-bowtie, polyR-bowtie, and RGD-bowtie carrying either negative control miR or 

miR-126), total RNA of treated HUVECs was extracted using TRIzol (Invitrogen). Total 

isolated RNA (500-1000 ng) was reverse transcribed with TransScript First-Strand cDNA 

Synthesis SuperMix (Transgene, China, Beijing). The gene expression levels were 

analyzed using the SYBR Green real-time PCR method and quantified with the Bio-Rad 

CFX96 Real time PCR System (Bio-Rad). Primers for SPRED1 and GAPDH were all 

obtained from Sangon (China, Shanghai). SPRED1 gene expression values were 

normalized to GAPDH levels, followed by comparison of knockdown due to transfection 

of miR-126 or negative control miR within each transfection vehicle. Relative expression 

was calculated using the comparative CT method. The mean minimal cycle threshold 

values were calculated from triplicate reactions. 

4.2.10 Toxicity and proliferation 

After 40 hours incubation in 2% FBS Opti-MEM, media was removed, and the 

cells were fixed in 2% PFA and stained with 0.5 µg/mL DAPI for 10 min. Fluorescence 
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images were captured by an IX71 fluorescence microscope (Olympus, Japan), and the 

number of cells in each well was counted. 

4.2.11 Tube formation 

Forty hours after transfection media replacement with fresh media, cells were 

detached and counted. Ten thousand cells from each treatment group were re-

suspended in ECM supplemented with 5% FBS and plated onto Matrigel films in 96-well 

plates. Cells were incubated for 6 hours and imaged under bright-field microscopy. Tube 

length was quantified by ImageJ software analysis.183 Tube formation experiments were 

performed three times. 

4.2.12 Statistics 

Quantitative results were presented as means ± standard error of measurements. 

Where appropriate, statistical comparisons were performed with one-way ANOVA 

followed by Fisher’s least significant difference post-hoc test. All statistical tests were 

conducted using IBM SPSS 20.0.0 statistical software. The level of significance was 

denoted by *, **, and ***, denoting p values of <0.05, <0.01, and <0.001, respectively. 

4.3 Results 

4.3.1 Synthesis of dendrimeric bowtie conjugates 

After decoration of g2P dendrimers with ligands (Figure 4.1 A), the dendrimers 

were cleaved with TCEP and coupled with similarly cleaved g4P dendrons (Figure 4.1 B), 

giving rise to a bowtie structure containing two distinct hemispheric regions. The 

conjugates were termed “non-dec-bowtie”, “polyR-bowtie”, and “RGD-bowtie”.  

We monitored the dendron coupling process by evaluating the reduction of g2P 

and g4P with TCEP, and the coupling of the thiol-containing dendrons with BMB. 

Ellman’s reagent, DTNB, was employed to relatively quantify the remaining free thiol 
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groups such as those generated and consumed in our bowtie conjugation scheme 

(Figure 4.2). By sampling our reaction mixture at various stages, we confirmed with 

statistical significance the cleavage and coupling of dendrimers of dendrimeric bowties. 

Specifically, only 3.7 ± 0.6% of the cleaved g4P dendrons remained unmodified after 30 

min, whereas the free thiols from the second infusion of cleaved dendrons remained 

unmodified for a longer period: 54.5 ± 5.1% after 30 min and 1.3 ± 0.6% overnight. The 

modification of cleaved g4P dendrons with BMB proceeded at a faster overall rate than 

the coupling of BMB-g4P conjugates with cleaved dendrons: whereas 96% of g4P 

sulfydryl groups conjugated to BMB within 30 min, only 46% of free thiols from the 

second infusion of cleaved dendrimers converted within a matched time frame. This was 

likely due to differences in the ratios between sulfydryl and maleimide groups; our 

reaction mixture between cleaved g4P dendrons contained a free thiol:maleimide ratio of 

1:20, whereas the subsequent BMB-g4P reaction with cleaved dendrons contained a 

stoichiometric ratio of 1:1.2. Also, the relatively small size of free BMB (248.23 Da) may 

have contributed to an increased reaction rate compared to the larger BMB-g4P 

dendrons (>7.4 kDa). 
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Figure 4.2. Progression of coupling reaction. Indicated by the generation and consumption of 
unreacted free thiols. 

 
 
 

Further confirmation of the coupling between cleaved g4P and g2P dendrons 

was conducted by examining the 1H-NMR spectra of g4P, decorated g2P dendrimers, 

and final bowtie conjugates (Figure 4.3). The representative PAMAM peaks occur in the 

2.6 to 2.9 ppm range and the polyR and RGD peaks occur in the 1.5 to 2.0 ppm range 

(in both cases due to the alkene protons present in the arginine side chain). Qualitative 

comparison between the g2P conjugate and the bowtie spectra indicate a decrease in 

the area of the arginine peaks, correlated with an increase in the area of the PAMAM 

peaks. This analysis confirms the coupling between the thiols of the cleaved g4P and 

g2P dendrons.  
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Figure 4.3. Comparison among g4P, decorated g2P, and bowtie NMR spectra. The decrease 
in peptide peaks and concurrent increase in PAMAM peaks indicate coupling. 

 
 
 

4.3.2 Encapsulation of miR by dendrimeric bowtie 

We characterized the complexation capacity of miR by dendrimers to determine 

the maximum payload. We first evaluated this by dye exclusion assay, as measured by 

fluorescent plate reader (Figure 4.4 A). As the N/P ratio increased from 0 to 0.33, the 

amount of non-encapsulated miR decreased as evidenced by the decreased 

fluorescence intensity. When N/P ratios were greater than 0.33, the change in 

fluorescence intensity decreased, indicating that the maximum loading capacity of 

dendrimeric bowties with miR corresponded with an N/P ratio of approximately 0.66. 

To corroborate these findings, we performed gel electrophoresis experiments 

with similar N/P ratios (Figure 4.4 B). For ratios less than 0.33, bands present in the gel 

indicated that the amounts of dendrimer in the systems were insufficient for complete 

miR encapsulation. In contrast, the lack of bands in lanes where the N/P ratio was 

greater than or equal to 0.33 signified the total encapsulation of miR. This trend was 

similar to that observed in the fluorescent dye exclusion assay. Loading capacity of miR 

was conserved among the vehicle types. 
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Figure 4.4. Evaluation of the dendrimeric vehicle encapsulation capacity. Measured by (A) 
fluorescent dye exclusion and (B) gel retardation. The N/P ratio that maximized payload and 
minimized non-encapsulated miR was 0.66. 

 
 
 

4.3.3 Physical characterization of dendrimer conjugates 

The particle sizing spectra as measured by SLS at 90o is displayed in Figure 4.5 

A. Average radii (radius of gyration) and zeta potentials of particles formed by miR-

encapsulated dendrimers are presented in Figure 4.5 B. Particle radii ranged from 96 to 

108 nm, indicating the occurrence of dendrimer aggregation. Zeta potentials ranged from 

-21 to +2 mV. 
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Figure 4.5. Dendrimer sizes. (A) DLS particle size spectra. (B) Summary of particle radius and 
zeta potential measurements. 

 
 
 

4.3.4 Dendrimer conjugate type affects cell viability and transfection efficacy 

Cells were treated with dendrimeric bowties and g4P loaded with non-targeting 

miR to evaluate toxic effects of the delivery systems. We found that compared to non-

treated cells, g4P and non-dec-bowties significantly reduced HUVEC cell number by 

76.2 ± 3.3% (p=0.032) and 74.7 ± 4.2% (p=0.024) of non-treated group size, 

respectively (Figure 4.6 A). In contrast, treatment of cells with bowties polyR- or RGD-

bowties loaded with non-targeting miR mimic exhibited no statistically significant 

detrimental effect on cell number. 
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Figure 4.6. Cytotoxic and proliferative effects of dendrimers. (A) Cytotoxicity effects of 
dendrimeric vehicles on HUVECs. G4P and nondec-bowties were both toxic, whereas neither 
polyR-bowtie and RGD-bowtie affected cell population. (B) Proliferative effects of miR-126-loaded 
vehicles. RGD-bowtie was the only group to increase proliferation, whereas g4P decreased cell 
number. Asterisks denote comparison to nontreated control groups. 

 
 
 

We then treated cells with miR-126-loaded dendrimers for 8 hours followed by 40 

hours incubation and measured proliferation by cell counting. Only transfection mediated 

by RGD-bowtie demonstrated a significant proliferative effect (Figure 4.6 B). Compared 

to non-treated cells, transfection by loaded g4P caused a statistically significant loss in 

cell numbers of 60.8 ± 7.1 % (p=0.050). This result is consistent with the g4P loaded 

with non-targeting miR. Transfection by non-dec- and polyR-bowties demonstrated no 

significant negative or beneficial effect on cell number: just 75.1 ± 3.7 % (p=0.187) and 
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93.0 ± 9.8 % (p=0.698), respectively, compared to non-treated groups. In contrast, miR-

126 transfection mediated by RGD-bowties resulted in a statistically significant increase 

of 153.8 ± 5.8% (p=0.012) in cell number.  

4.3.3 HUVEC tube formation as a function of dendrimer type 

We evaluated the ability of miR-126-loaded dendrimers to induce tube formation 

in HUVECs (Figure 4.7). When plated on matrigel films, tubes formed by cells treated 

with miR-126-loaded g4P were statistically shorter: only 59.9 ± 1.6 % (p=0.036) as long 

as tubes formed by non-treated cells. Likewise, treatment with miR-loaded non-dec-

bowties failed to show an increase in tube length. However, both polyR- and RGD-

bowties loaded with miR-126 significantly increased tube formation: compared to non-

treated cells, polyR-bowtie-treated cells formed 160.5 ± 8.4 % (p=0.004) tube length and 

RGD-bowtie-treated cells almost doubled tube length to 191.5 ± 9.6 % (p=0.0003) of 

non-treated cells.  
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Figure 4.7. Tube formation analysis as a result from transfection of miR-126 or negative 
control miR with dendrimeric vehicles. G4P-mediated transfection failed to induce tube 
formation of HUVECs, whereas both polyR- and RGD-bowtie enhanced tube formation when 
delivering miR-126. Neither polyR- nor RGD-bowtie loaded with negative control miR induced 
tube formation. Scale bars = 100 µm. 

 
 
 

To evaluate if the increase in tube formation was elicited by cell-material 

interactions from polyR- or RGD-bowtie, or if it were due to miR-126 transfection, we 

transfected HUVECs with negative control miR. We found that neither treatment groups 

exhibited a significant change in tube formation compared to non-treated cells (Figure 

4.7). 
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4.3.6 Molecular analysis of dendrimer-mediated knockdown 

To further evaluate transfection efficacy of miR-loaded dendrimers, we measured 

the presence of SPRED1-encoding mRNA, the target of miR-126, in treated and non-

treated cells (Figure 4.8). Of note was that polyR-bowtie- and g4P-mediated transfection 

showed significant decreases in SPRED1 mRNA: g4P and polyR-bowtie dropped 

SPRED1 mRNA levels to 50.4 ± 10.7% (p=0.046) and 49.7.0 ± 3.0% (p=0.044) 

compared to non-treated cells. Our experiments suggested a trend for RGD-bowtie-

mediated transfection to knock down SPRED1 mRNA (67.1 ± 6.6%, p=0.162), and non-

dec-bowtie dendrimers did not knock down the presence of SPRED1 mRNA. However, 

decoration of dendrimeric bowties enhanced knockdown of SPRED1 mRNA: compared 

to cells treated with non-dec-bowties, dendrimeric RGD-bowties and polyR-bowties 

showed significant knockdown of SPRED1 mRNA of 40.3% (p=0.007) and 54.5% 

(p=0.028), respectively. 

 
 
 

 

Figure 4.8. Efficiency of dendrimeric vehicle-mediated transfection of miR-126. Compared 
to nontreated control groups, only g4P and polyR-bowtie downregulated SPRED1, a target of 



www.manaraa.com

 76 

miR-126. Compared to no-dec-bowtie, the other vehicles—including RGD-bowtie—decreased the 
presence of SPRED1. 

 
 
 

4.4 Discussion 

Dendrimers have been explored as drug delivery agents because they present a 

stable, well-defined nanoscale architecture with a tunable number of reactive terminal 

groups.174-176 The efficacy of “naked” siRNA therapy has been due to circulating RNase 

A-type nucleases and rapid renal clearance.184, 185 Dendrimers have proven protective 

against degradation by RNase,37 which—coupled with their functionalizable surface 

groups—intimates their application for RNAi therapeutics. However, the traditional 

dendrimer design potentially faces limited application: although altering ligand density is 

a feasible way to tune particle uptake, hemispheric selectivity of ligand conjugation to 

simultaneously spatially control both the density and number of ligands or RNA-binding 

sites is virtually non-existent. To address this insufficiency, we proposed a bowtie design 

that features two regions of either locally dense ligands or RNA-binding amines.  

Synthetic schemes for generating dendrimeric bowties can be divergent186, 187 or 

convergent, i.e. grown from a “seed” dendrimer that features ab initio orthogonally 

reactive terminal groups or generating a final molecule from unique dendrimers 

developed a priori. Convergent synthesis can feature either the coupling of dendrons 

featuring unique reactive groups at the core, such as that rely on click chemistry,188 or 

the cleaving and coupling of identical functional groups, such as dendrimers with 

reducible disulfide cores.189, 190 Divergent synthesis can be problematic in that not all 

terminal groups may be modified at each synthetic step. However, cystamine-core 

PAMAM dendrimers of several generations are commercially available and feature 

readily functionalizable reactive terminal amines. One other advantage of these 
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dendrimers is the availability of thiol-reactive coupling agents that minimize the reaction 

incidences of non-unique dendrons (as opposed to re-oxidation in the presence of air); 

by reacting the coupler with one dendron type before adding the second species, the 

synthesis of homogenous bowties is avoided. The method presented here generates 

disulfide-core dendrimers decorated with desired terminal groups before reduction of the 

disulfide bond and convergent bowtie synthesis by bismaleimido coupling. 

It is seen that the RGD-bowtie and non-decorated bowtie (but not polyR-bowtie 

or PAMAM) showed reduced zeta potential but were still in the negative range. These 

results are considered reasonable for the following reasons. First, we chose to use 

minimum amounts of dendrimeric carrier to complex with RNA to test the carrier under 

high loading capacity. Second, this result actually matches with the structure of the 

carrier, as aspartic acid (in RGD)—which is speculated to be on the surface of the 

nanocomplex—is negatively charged, as are the hydrolyzed maleimide groups (which 

converted to carboxylic acids) on the peptide-modified dendrimeric bowties. PolyR may 

provide more positively charged groups that balanced the negative charges on bowtie 

surface.  

Our studies191 demonstrated the superiority of bioactive ligand-decorated 

dendrimeric bowties compared with both non-decorated bowties and g4P in preventing 

cell toxicity under experimental conditions of 0.175 mM miR and N/P ratio of 1.5. 

Whereas both g4P and non-dec-bowtie were detrimental to cell number, neither polyR-

bowtie nor RGD-bowtie materials exerted cytotoxicity. The toxic effects that dendrimers 

exhibit are generally attributed to the cationic charges of the terminal amines, which can 

contribute to membrane destabilization192 and apoptotic pathway activation.193 Therefore, 

it is important to consider such electrostatic interactions when evaluating vehicle 

performance, and in our dendrimeric bowties were structurally different from g4P: each 

bowtie bore half of the charged amines as compared to g4P, which featured higher local 
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charge density. But despite containing half of the positive surface charges as g4P, it was 

apparent that the existing charges on non-dec-bowtie were sufficient to induce similar 

toxic effects. In contrast, the lack of cytotoxicity exerted by either polyR- or RGD-bowtie 

indicated the beneficial consequence of surface peptide decoration-mitigated toxicity. By 

conjugating peptides to an otherwise cytotoxic backbone, the overall concentration of 

PAMAM terminal amine charges within one vehicle is decreased, which may ameliorate 

toxic interactions such as membrane destabilization. Furthermore, peptides on 

dendrimer surfaces may activate internalization mechanisms different from those elicited 

by PAMAM surface charges. 

Characterizing the effects of vehicle type on cell viability provided preliminary 

information on the suitability of dendrimeric bowties for transfection, but we were 

interested in examining the further pro-angiogenic effects of the decorated bowtie-

mediated delivery versus delivery mediated by g4P and non-dec-bowtie. Both g4P and 

non-dec-bowtie were unable to induce cell proliferation or tube formation, perhaps due to 

their relatively high cytotoxicity that may have counteracted any proliferative effects. On 

the other hand, PolyR-bowtie knocked down SPRED1 by half and successfully induced 

tube formation despite having no effect on proliferation. Considering that the polyR-

bowtie exerted no detrimental effects on cell viability, a proliferative/tubulogenic-

decoupled interaction may be taking place between the material and signaling or 

translational pathways that remains to be explored. The possibility of distinctive effector 

pathways was further demonstrated by miR-126-loaded RGD-bowtie, which both 

induced cell proliferation and tube formation. Although RGD-bowtie lacked statistical 

significance in its knockdown of SPRED1 by a third compared to non-treated cells, we 

did find that RGD decoration enhanced SPRED1 knockdown significantly compared to 

non-dec-bowtie. As others have demonstrated that RGD induces cellular 

internalization,40, 178, 194-196 it is entirely possible that in our studies, the RGD-bowtie 
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mediated uptake of miR-126 improved proliferation and tube formation through an 

independent non-SPRED1 pathway. The mRNA targets of miR-126 include CRK,197 

CXCL12,198 HOXA9,199 PIK3R2,200 TOM1,201 and SPRED1.200 The last is a negative 

regulator of MAPK and PI3K signaling, and served as a surrogate for ascertaining 

transfection efficacy in our study. We also failed to find significant regulation of PIK3R2 

mRNA in any treatment groups. Another possible mechanism for the angiogenic effects 

of RGD-bowtie is that, as RGD is part of the recognition sequence that binds integrin,202 

extracellular interactions from the tethered RGD may have contributed to downstream 

results through differential gene expression.203 However, neither polyR- nor RGD-bowtie 

materials alone were found to increase tube length, indicating that tube formation was 

dependent on at least miR-126 internalization, though vehicle type may compound 

angiogenic effects. The ability of g4P to downregulate SPRED1 mRNA while exerting 

deleterious downstream effects was a striking demonstration of its unsuitability as a 

transfection agent in pro-angiogenic applications. 

There has been a burgeoning field of miR discoveries in the last several years, 

and research toward application is in close suit. The miRs 27b,204 92a,205 126,200 130a,206 

132,207 and 210200 among others have been reported to regulate angiogenesis.208 

Additionally, miRs associated with cardiac development, endothelial cell proliferation, 

vascular integrity, and CM and vascular smooth muscle cell differentiation have been 

identified.15-17, 209 The promise of therapeutic applications exists in exploiting the 

endogenous RNAi machinery by delivery of effective levels of miRs or antagomirs to the 

intended cell types. The field of delivery nanovehicles for miRs, however, is largely 

undeveloped. Future in vivo studies are warranted to investigate treatment with miR-

loaded bowties to rescue the heart in a rat MI model.  

Taken together, RGD-bowtie functioned as a potential miR-delivery agent for 

angiogenic application by significantly enhancing cell proliferation and tube formation of 
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endothelial cells without contributing to cytotoxicity. Our study could have wide-ranging 

implications for developing new transfection reagents for primary cells as well as for 

promoting angiogenesis by enhancing endothelial proliferation and tube formation, which 

would be considered a significant and applicable accomplishment. As a cardiology lab, 

we are especially interested in these functions as a potential therapeutic system to treat 

the infarcted heart.  

Multi-functional dendrimeric bowties are substantially versatile in regards to size, 

shape, and regio-selectivity of terminal chemical groups. In the field of RNAi therapeutics, 

they may prove to be superior transfection agents due to the high concentration of miR- 

and siRNA-binding groups and targeting groups that they simultaneously offer. Our 

overall objective in this study was to present the design and functionality of a novel bi-

functional dendrimeric conjugate, one half consisting of a cationic PAMAM dendron 

capable of binding miR, and the other half decorated with cell-targeting peptide ligands. 

We presented a facile synthetic scheme for generating our bowtie construct and 

demonstrated successful knockdown of a targeted SPRED1 mRNA with miR-126. As it 

stands, these dendrimeric bowties were substantially more effective in inducing 

downstream effects than conventional g4P while exhibiting much greater biocompatibility. 

Our study demonstrates the paradigm to synthesize ligand-decorated dendrimeric 

bowties with defined spatial structures and this model system could lay the groundwork 

for development of a miR-based therapy for myocardial and peripheral ischemic 

diseases by promoting angiogenesis and subsequent blood flow to the diseased regions. 
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CHAPTER 5 

THERAPEUTIC EFFECTS OF EXOSOMES FROM HYPOXIC CARDIAC 

PROGENITOR CELLS  

 
 
 

5.1 Introduction 

Cardiovascular disease is the leading cause of morbidity and mortality in 

developed nations, and acute MI is the major subgroup, with an estimated 1.1 million 

Americans suffering MI alone.49 Beyond the acute treatment of restoring blood flow to 

the infarct, subsequent measures focus on improving the contractility of the remaining 

tissue. The damaged, relatively non-regenerative myocardium undergoes a 

degenerative process leading to heart failure. Consequently, the annual financial cost of 

cardiovascular totaled $315.4 billion in 2010, and costs are expected to grow to $918 

billion annually by 2030 when 43.9% of the population is expected to suffer from CVD.49 

Cell-based therapies to treat the heart—including injection of stem cells from 

various sources—have yielded mixed results in several species.41-44 Cardiac progenitor 

cells, a small population of stem-like cells residing in the heart, are of interest as they 

only differentiate in to cardiac lineages and can be isolated by tissue biopsy. 

Researchers have induced differentiation of stem cells into various cardiac cell types, 

and observed that cell secretion changes in response to alterations in extracellular 

conditions.210-215 However, whether stem cells contribute to the cardiac response through 

differentiation or paracrine signaling—or a combination of the two—is still unknown. 

Despite the moderate benefit in stem cell therapy, major hurdles remain, including 

immunogenicity, toxic engraftment environment, and temporal constraints in patient-

specific cell expansion. 
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MicroRNAs have been known to function in intracellular gene regulation, but in 

the past decade have been discovered to circulate in mammals.216, 217 Since then, stable 

miRs have also been discovered in urine, saliva, semen, breast milk, and cerebrospinal 

fluid.217-220 Differential miR profiles were found in biofluids based on pathology, leading to 

interest in the development of disease biomarkers.120, 130, 221 These profiles have already 

been explored for a range of conditions, including cancer, diabetes, and CVDs.120, 222, 223 

The discovery of stable circulating miR was met with some surprise, as 

circulating nucleases would be expected to degrade extracellular miR.126 However, 

various protective carriers for extracellular miR have been observed: membrane-derived 

vesicles (apoptotic bodies, microvesicles, and exosomes), high-density and low-density 

lipoproteins, and proteins (especially from ribonucleoprotein complexes).126, 209, 217, 222 

Recent efforts have been made to explore the endogenous function of circulating miRs, 

especially in intercellular gene regulation.217, 224 Originally considered cell debris, 

membrane-derived vesicles were more appropriately characterized in 1987,121 and cell-

cell transfer of exosomes observed in 2002,122, 123 but miR encapsulation by exosomes 

was not verified until 2007.124, 125 Interestingly, the miR signatures are unique among the 

different carriers,126 and even between carriers and parent cells, suggesting regulated 

export of miRs.15, 126, 128 Most cells secrete exosomes; those verified include platelets,222, 

225 lymphocytes,224 and adipocytes,226 and, muscle,120, 135, 227 tumor,228, 229 glial,230 and 

stem cells.48, 138, 140, 141, 231  

In this report, we generated exosomes from CPCs exposed to hypoxic  and normoxic 

conditions for 3 hr or 12 hr and explored the effects of these exosomes on cardiac cells in vitro. 

We found that exosomes from CPCs subjected to hypoxia for 12 hourr induced significantly more 

tube formation and reduced fibrotic gene expression as compared to exosomes from normoxic 

CPCs. We also analyzed secreted miR via array and identified several miRs upregulated by 

hypoxia 12 hr exosomes. Using empirical data and statistical transformation processes, we 
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developed a computational model of miR content to predict the effects of 3 hr exosomes from 

hypoxic and normoxic CPCs. Finally, we identified co-varying miR clusters that may lead to 

future bio-inspired therapeutics. 

5.2 Materials and Methods 

5.2.1 Media components 

The media that was used for the fibroblasts consisted for 10% FBS, 1% L-

glutamine, 1% penecillin, and 1% streptavidin, and DMEM basal media. For DMEM 

quiescent media, FBS was reduced to 2%. The culture media that was used for the 

cardiac microvascular endothelial cells (CECs) consisted of animal cardiac endothelial 

cell basal media, 2% FBS, 1% L-glutamine and 1% antibiotic/amniotic and 0.1% 

endothelial cell growth supplement. For CEC quiescent media, FBS was reduced to 

0.04%. The CPC culture media, Ham’s F-12 basal media was used along with 10% FBS, 

1% penecillin, 1% streptavidin, 1% L-glutamine, 0.1% Leukemia Inhibitory Factor (LIF), 

and 10% fetal bovine growth factor. For CPC quiescent media, no FBS was used and 

1% ITS was added. For CPC treatment media, no FBS or LIF was used and 1% insulin-

transferrin-selenium (ITS) was added.  

5.2.2 Exosome generation  

Cardiac progenitor cells were grown to 90% confluence and quiesced for 12 hr. 

Plated cells were subjected to normoxic or hypoxic conditions for 3 hours or 12 hours. 

To generate hypoxic conditions, cells were transferred to an incubator chamber (Billups-

Rothenberg MIC-101) and flushed with hypoxic gas mixture (95% N2, 5% CO2). After 

conditioning, the media was subjected to sequential centrifugation (Optima XPN-100 

ultracentrifuge; Beckman Coulter SW 41 Ti rotor) at 10,000 x g for 35 min to remove cell 

debris and 100,000 x g for 70 min., followed by two washings in PBS (100,000 x g, 70 
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min.). The exosome pellet was isolated and the protein content of the exosome 

suspension was analyzed by Micro BCA Protein Assay kit (Thermo Scientific Pierce 

23235) according to manufacturer’s instructions.  

5.2.3 Secreted miR analysis 

miR was isolated from conditioned media with the miRVANA PARIS kit 

(Invitrogen AM1556M) according to manufacturer’s protocol. The miR solutions were 

then analyzed (Agilent 2100 Bioanalyzer) for size, quality, and quantity of miR. Following 

characterization, miR was subjected to analysis via Affymetrix MultiSpecies MicroRNA 

GeneChip array. Data were analyzed in Affymetrix Expression Console to determine 

levels of miR upregulation. 

To evaluate levels of upregulated miR in exosomes, exosomal miR was isolated 

with the miRVANA PARIS kit and cDNA generated via NCode miRNA First-Strand cDNA 

Synthesis Kit (Invitrogen MIRC-50) according to manufacturer’s protocol. cDNA samples 

were then subjected to qRT-PCR and relative mRNA levels ascertained by comparative 

CT method. The primers for CTGF and GAPDH GAPDH were: CTGF forward, 5’- AAT 

GCT GTG AGG AGT GGG TG-3’; CTGF reverse, 5’- TGG CTC GCA TCA TAG TTG 

GG-3’; GAPDH forward, 5’- CCA GCC CAG CAA GGA TAC TG-3’; GAPDH reverse, 5’- 

GGC CCC TCC TGT TGT TAT GG-3’. 

5.2.4 Flow cytometry on exosomes 

Pooled exosomes were incubated with 1 uL sulfate-aldehyde latex beads 

(Invitrogen A37304) for 2.5 hr at 37 C, after which 100 mM glycine in 10% goat serum 

was added to quench the reactive groups and block. Exosome-bead complexes were 

centrifuged (4,000 x g, 5 min) and washed with 1% bovine serum albumin (BSA) in PBS. 

Complexes were resuspended and incubated with mouse anti-rat CD 1° antibody (BD 

Biosciences 551808) for 12 hr at 4 °C. Complexes were washed in 1% BSA/PBS and 
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incubated in Alexa Fluor 488 goat anti-mouse IgG (H+L) antibody (Invitrogen A-11001). 

After incubation (2 hr at 37 °C), complexes were washed twice and subjected to flow 

cytometry (BD Biosciences BD LSR II), where at least 50,000 events were collected. 

5.2.5 Transmission electron microscopy 

Exosome pellets were isolated. The samples were prepared by a negative 

staining method using 1% phosphotungstic acid. 5 µl of the sample was deposited onto 

carbon-coated 200 mesh cooper grids that have been treated by glow discharge. After 5 

minutes, the grid was dragged on a peiece of filter paper to remove excess liquid on grid. 

5 µl of 1% aqueous phosphotungstic acid (PTS, ph6.5) was deposited onto the grid 

before sample on grid was dried. After 30 seconds, the grid wad dragged on a piece of 

filter paper to remove the PTA on the grid. In the end, the grid was left to air-dry. The 

samples were then imaged using the JEOL JEM-140 0 transmission electron 

microscope.  

5.2.6 Cellular uptake of exosomes 

Exosomes were stained with calcein (2 uM final concentration) for 30 min at 

room temperature, followed by two washes in PBS (100,000 x g, 70 min). Pellets were 

then passed through 0.20 um filters. Rat cardiac fibroblasts and endothelial cells were 

treated with the stained exosomes (1 mg/mL) for 12 hr and washed before being 

trypsonized and subjected to flow cytometry (Imagestream X Mark II), where 10,000 

events were collected. Images were analyzed by Amnis IDEAS image analysis software 

using spot count and channel intensity wizards. 

5.2.7 Tube formation 

Rat primary CECs (CellBiologics R2111) were plated on gelatin-coated 12 well 

plates. Following quiescence for 12 hr, cells were then treated with 0.01, 0.1 and 1 
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mg/ml hypoxic or normoxic exosomes for 24 hours. The cells were then lifted and 

counted so that 10,000 cells from each treatment group were plated onto 30 ul Geltrex 

(Invitrogen A1413202) thick gels in 96-well plates. The cells were then incubated for 6 

hours and stained with 2 µM calcein in PBS.  Cell groups were imaged with a fluorescent 

microscope (Olympus IX71) and the tube length was quantified using ImageJ software 

analysis. 

5.2.8 Rat cardiac fibroblast isolation 

Excised hearts from adult male Sprague-Dawley rats were minced and subjected 

to trypsin digestion (1 mg/mL in HBSS-, 4 C, 6 hr), followed by collagenase digestion 

(0.8 mg/ml in HBSS-, 37 C, 15 min). Digestion solutions were quenched with culture 

media and cell suspension passed through a 100 um filter. Cells were pelleted and 

plated for 3 hr to allow adherence of fibroblasts before washing plates to remove non-

fibroblasts. 

5.2.9 TGF-β stimulation  

Fibroblasts were quiesced for 12 hr and treated with 0.1 mg/ml exosome for 12 

hr before the addition of TGF-β (2 ng/ml final concentration) for 12 hr. Cell mRNA was 

isolated via Trizol reagent (Invitrogen 15596-026) according to manufacturer’s 

instructions. cDNA was generated via M-MLV Reverse Transcriptase (Invitrogen 28025-

013) and qRT-PCR (Power SYBR Green, Invitrogen 4368708) was performed to 

evaluate CT levels. Relative expression was calculated using the comparative CT 

method. The mean minimal cycle threshold values were calculated from triplicate 

reactions. 
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5.2.10 Principle component and partial least squares regression analysis 

Principle component analysis was applied to normalized miR array data (3 hr or 

12 hr generation duration; normoxic or hypoxic conditions) to evaluate data along three 

principle components. Then Simca-P (UMetrics) software was used to establish 

relationships between miR levels (signals) responding to cues (exosome generation 

conditions) and responses (tube formation and connective tissue growth factor (CTGF) 

mRNA levels). Variable Importance of Projection (VIP) were calculated to determine 

which signals have the greatest projection/contribution towards a phenotypic outcome. 

By identifying the VIPs, the number of miRs needed to evaluate was reduced from 378 

to 100. A new model was produced by iteration using the same response matrix values. 

Finally, another PLSR model was created trained on the 7 miRs confirmed by qRT-PCR. 

Goodness of prediction was tested using a bootstrapping approach; cross-validation was 

performed by omitting an observation, then using the calculated weighted coefficient 

matrix to predict response values without those removed observations.  This procedure 

was repeated until every observation had been excluded exactly once.  Then 

predictability was determined using root mean square error between predicted and 

experimentally observed values. 

5.2.11 Statistics 

All statistics were prepared with Graphpad Prism software. Results are reported 

as average±SEM. 

5.3 Results 

5.3.1 Characterization of isolated exosomes 

To verify that hyopoxic and normoxic CPCs release exosomes media was 

subjected to high-speed centrifugation and exosome fraction was collected. We bound 
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exosomes to reactive sulfate-aldehyde latex beads and incubated the complexes with 

antibody against CD9, an exosomal surface marker. Flow cytometry revealed the 

exosome-bead complexes as CD9+, whereas the negative controls—beads alone and 

antibody-incubated beads—were negative for CD9 (Figure 5.1 A). Transmission electron 

microscopy confirmed exosome isolation, with visual confirmation of vesicles with 

average diameter of 102.0±3.1 nm and 96.1±6.1 nm for exosomes from normoxic or 

hypoxic exosomes, respectively (Figure 5.1 B). We measured total small RNA and 

protein levels in exosomes from both hypoxic and normoxic CPCs, and confirmed that 

total small RNA and protein levels were not different between exosome type (Figure 5.1 

C, D). 

 
 
 

 

Figure 5.1. Characterization of isolated exosomes. A) Flow cytometry validated presence of 
CD9+ exosomes. B) Transmission electron microscopy imaged exosomes generated in normoxic 
and hypoxic conditions (scale bar = 100 nm). No difference was observed in (C) small RNA or (D) 
protein concentration between exosomes generated in normoxic or hypoxic conditions. 
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5.3.2 Evaluation of cellular uptake of exosomes 

We next determined whether cardiac cell types of interest could internalize 

exosomes. To test this, we treated cardiac endothelial cells and cardiac fibroblasts with 

fluorescent calcein-stained exosomes for 12 hr, and imaged cells quantitatively with 

ImageStream flow cytometry (Figure 5.2 A, B). Internalization of exosomes was 

confirmed visually by the presence of intracellular punctate fluorescence. In addition, we 

evaluated if rates of internalization were dependent on exosome type. Analysis of 

number of spots per cell revealed no difference in uptake between exosomes from 

hypoxic or normoxic CPCs in either cell type (Figure 5.2 C, D). Furthermore, no 

difference was observed in average fluorescence intensity per cell between exosome 

type (Figure 5.2 E, F). 

 
 
 



www.manaraa.com

 90 

 

Figure 5.2. Cardiac cells internalize exosomes. Calcein-stained exosomes were internalized 
by both CECs (A) and fibroblasts (B). There was no difference in uptake of exosomes by either 
cell type when spots per cell (C, D) or fluorescence intensity per cell (E, F) were analyzed. 

 
 
 

5.3.3 Effects of exosomes on endothelial tube formation 

We sought to evaluate whether internalization of exosomes could induce 

endothelial tube formation. Cardiac endothelial cells were treated for 24 hrs with 

exosomes from hypoxic or normoxic CPCs and then plated on Geltrex prior to imaging 

(Figure 5.3 A). While exosomes from normoxic CPCs had no significant effect on tube 

formation, exosomes from hypoxic CPCs significantly enhanced formation of tube-like 

structures (Figure 5.3 B).  This response was dependent on exosome dose, plateauing 
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at 0.1 mg/mL with a 2.24±0.24-fold increase in tube formation. Disruption of exosomes 

from hypoxic CPCs via sonication abrogated the effect. 

 
 
 

 
Figure 5.3. Exosomes from hypoxic CPCs enhance endothelial tube formation. Tube-like 
structures were imaged (A) and quantified (B). While exosomes from normoxic CPCs did not 
significantly influence tube formation, exosomes caused up to 2.4-fold greater tube formation. 

 
 
 

5.3.4 Mitigation of fibroblast stimulation by exosomes 

To investigate the potential effects of exosomes on fibrosis, we treated rat 

cardiac fibroblasts with either exosomes derived from normoxic or hypoxic CPCs prior to 

stimulation with the TGF-β. Levels of mRNA encoding connective tissue growth factor 

(CTGF) were determined by qRT-PCR (Figure 5.4). As expected, CTGF mRNA levels 

increased 3.6±0.28-fold upon TGF-β stimulation. We observed no significant decrease in 

CTGF mRNA levels in response to treatment with exosomes from normoxic CPCs, but 

detected a significant decrease in cells treated with hypoxic exosomes to only 2.1±0.14-

fold compared to non-treated cells. 
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Figure 5.4. Exosomes from hypoxic exosomes mitigated fibroblast stimulation.TGF-β 
stimulated CTGF mRNA levels, but only hypoxic exosomes decreased CTGF levels. 

 
 
 

5.3.5 Evaluation of miR exosome contents 

We next evaluated the change in the miR secretome of CPCs in response to 

hypoxic conditions. We isolated the small RNA fraction of CPC conditioned media (3 and 

12 hour, normoxic and hypoxic) and performed Affymetrix GeneChip miR array. We 

found 11 miRs upregulated 2-fold or more due to hypoxic conditions at the 12 hour time 

point. Conducting qRT-PCR on the small RNA isolated from pooled exosomes, we 

validated the upregulation in hypoxic exosomes of seven of the 11 miRs upregulated in 

hypoxic conditioned media (Figure 5.5 A). Conducting a literature review for these seven 

miRs and their reported functions revealed correlative and relationships between the 

miRs and cardiac functions of interest (Figure 5.5 B). 
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Figure 5.5. Identification and review of upregulated exosomal miRs. A) qRT-PCR identified 
seven miRs upregulated in exosomes generated by hypoxic CPCs. B) The miRs have been 
identified to regulate functions of interest, except for miR-292 that has not been explored. 

 
 
 

5.3.6 Statistical modeling of exosomal miRs and physiological responses 

Principle component analysis was applied to normalized data from the microarray 

to help group miR that co-vary based on the treatment condition.  Exosomes treated with 

normoxia or hypoxia were examined and their miR levels and fold changes were input 

into PCA.  The first PC clearly separated the fold change differences from the other 

signals.  PC2 was the normoxia/hypoxia axis.  However, 4 distinct clusters of miRs were 

co-variant as shown in Figure 5.6 A.  

 
 
 

 
Figure 5.6. PC and PLSR analysis of upregulate miRs and physiological functions. A) PC 
analysis discovered 4 unique clusters of miR that associate with either hypoxia or normoxia. B) 
PLSR of 3 or 12 hour hypoxia matched with outputs of tube formation (angiogenesis) and CTGF 
(fibrosis).  Top 100 VIPs were used to make the new model to determine which miRs contributing 
to one outcome or the other. Clear covariance of 12 hr hypoxia with tube formation and 12 hr 
normoxia with CTGF. 
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Using the software Simca-P (UMetrics), PLSR first considered the entire dataset 

and established a relationship between miR levels as signals responding to the cues of 3 

or 12 hr normoxia or hypoxia treatment, and the responses of tube formation, as a 

surrogate for angiogenesis, and CTGF levels, as a surrogate for fibrosis. Then the VIP 

(Variable Importance of Projection) were calculated to determine which signals (miRs) 

have greatest projection/contribution towards a phenotypic outcome. PLSR analysis also 

can identify the most important miR signals for a response outcome by calculating VIP 

using a weighted sum of squares of the coefficients calculated for a signal, such that 

those signals projecting strongly either positively or negatively with either CTGF or tube 

formation response, are highly ranked. By identifying these VIPs, the amount of data 

needed to capture and predict a specific response can be reduced from the 378 miR 

down to the top 100 VIPs, and a new model was made using same response matrix 

values.  Scores plot shows 12 hr hypoxia and 12 hr normoxia plotted on only one 

principle component (PC) that was calculated (Figure 5.6 B); this was due to these top 

signals, again projecting most towards the key driving cue, hypoxia vs. normoxia.  Clear 

separation of normoxia and hypoxia in the scores plot match the separation of tube 

formation and CTGF in the response loadings plot.  More, fibrosis (CTGF) co-varies with 

normoxia cues and tube formation co-varies with hypoxia cues.  

A new PLSR model was created trained on the 11 miR confirmed by qRT-PCR 

from preliminary data discussed in Aim 1 that were matched to physiologically relevant 

outcomes for cardiac function post-MI (Figure 5.7). Goodness of prediction was tested 

using a bootstrapping approach; cross-validation was performed by omitting an 

observation, then using the calculated weighted coefficient matrix to predict response 

values without those removed observations.  This procedure was repeated until every 
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observation had been excluded exactly once.  Then predictability was determined using 

root mean square error between predicted and experimentally observed values (Figure 

5.7 C).  For the preliminary dataset, only four outcomes were tested, 12 hr norm CTGF 

or tube formation and 12 hr hypoxic CTGF or tube formation. 

 
 
 

 
Figure 5.7. Refined PLSR analysis. A) Shows miRs that cluster with a certain function which 
can then be scored (B) for potential involvement, leading to regression analysis to determine 
predictability of response based on miR levels. 

 
 
 

5.4.7 Validation of statistical modeling 

To test the principle component analysis that 3 hr exosomes would have a 

diminished influence on cellular responses, we treated cardiac endothelial cells with 3 hr 

normoxic and hypoxic exosomes tested for tube formation (Figure 5.8). We found that, 

whereas tube formation was significantly increased by hypoxic 12 hr exosomes and not 

12 hr normoxic exosomes, the vasculogenic effects were removed in treatment with 

either 3 hr normoxic or hypoxic exosomes. 
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Figure 5.8. Validation of statistical modeling by tube formation. Whereas exosomes 
generated by hypoxic CPCs in 12 hr improved tube formation, treatment with exosomes 
generated by either normoxic or hypoxic exosomes in 3 hr yielded no difference. 

 
 
 

5.4 Discussion 

Myocardial infarction can trigger death in billions of cardiac myocytes, but 

myocytes are largely non-proliferative and thus the local environment compensates by 

replacing the cells with non-contractile scar tissue.120 While this non-contractile tissue 

provides structural integrity, cardiac function suffers. No definitive treatments exist for MI, 

and a third of patients will progress toward heart failure.120 Cell-based therapies in the 

last decade have demonstrated the benefit of injected stem cells on LV function post-

MI.232-234 However, several major hurdles exist including cell retention, toxic engraftment 

environment, immunogenicity of transplanted cells, and temporal limitations in expanding 

autologous cells. Cardiac progenitor cells reside in the heart that may exert a beneficial 

influence, but their population is too small to substantially protect or repair the heart. 

Although injected stem and progenitor cells alike may differentiate into functional tissue, 

many researchers believe that the benefits are due to production of growth factors, 

cytokines, and other paracrine signals.138, 235-237 We postulated that substantially 

amplifying this signal would leverage endogenous reparative mechanisms, while side-

stepping hurdles involved with cell-based therapies. 
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Because CPCs are specialized to function in the heart, CPC-generated 

exosomes may be well-suited to treat cardiac pathologies. Very few studies have 

investigated the therapeutic potential of CPC exosomes. In one, the exosomes 

enhanced endothelial migration, indicating angiogenic effects.140 In another, CPC 

exosomes reduced myoblast apoptosis in vitro and decreased myocyte cell death in an 

animal MI model.141 However, exosomes were generated in normoxic conditions in both 

of these studies, not hypoxic conditions that may better reflect post-infarct tissue. 

Hypoxic preconditioning enhanced the benefit of CPC therapy for in an animal MI 

model,238 and as such, we hypothesized that CPC exosomes generated in hypoxic 

conditions would exert greater beneficial effects on cardiac cells (CECs and fibroblasts) 

than normoxic exosomes. Our findings indicate that hypoxic exosomes indeed benefitted 

the cells more so than normoxic exosomes, providing foundation for their development 

as a post-MI therapeutic. Additionally, statistical analysis of the miR exosome 

components may aid in the development of future bio-inspired therapeutics. 

In comparing normoxic and hypoxic exosomes, it was important to evaluate 

vesicle size, total miR or protein levels, or cell internalization rate as contributing factors 

in different downstream effects we might observe. All these being similar between the 

two groups, we ruled out differences in loaded amounts or uptake as causes of 

physiological response. While we did not evaluate mechanism of uptake, it could be 

different between the two groups as surface markers may change during hypoxia. We 

found punctate fluorescence in the cells which is interesting as there is debate whether 

exosomes deposit their contents by cell membrane fusion or active internalization.120 

Observation of ~1 um spots lent support to the latter and may agree with what other 

groups have been found, that exosomes are internalized via endocytic pathways and 

transported to the perinuclear region by the cytoskeleton.120, 135  
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We found that although normoxic exosomes had no effect on tube formation, 

there was a positive effect of hypoxic exosomes a low treatment levels, but that it 

plateaued after 0.1 mg/mL. These effects could be due to the increased intra-exosomal 

levels of pro-angiogenic miR-17239-241 and -210242-244. In fact, miR-210 has been explored 

as a potential therapeutic for the post-MI heart.244 Disruption of exosomes by means of 

sonication abrogated the effect of hypoxic exosomes on tube formation, indicating the 

need for intact exosomes and not just surface binding of membranes. Exosomes from 

other cell types and tissues have also been found to induce angiogenesis, though 

sometimes resulting in pathological states, such as in tumor growth.130, 138, 245, 246 

Additionally, relating to CPC exosomes, one study found that treatment with exosomes 

enhanced endothelial cell migration in a scratch wound assay.140 While not measured in 

the study, our data, along with these supporting data provide support for the angiogenic 

potential of CPC hypoxic exosomes. 

Fibroblasts respond to the remodeling environment during post-period by forming 

non-contractile scar tissue,247 and this paired with the extensive cardiomyocyte death 

and non-proliferation,120 leads to long-term dysfunction. Further, stimulation of fibroblasts 

with cytokines such as TGF-b in the damaged myocardium increases production of 

CTGF, and other factors.248 We found that our exosomes from hypoxic CPCs 

significantly decreased CTGF mRNA levels 42% from stimulated levels, while there was 

no effect of exosomes from normoxic CPCs. Aberrant CTGF expression is associated 

with cardiovascular disease and involved in fibrotic pathology, exacerbating extracellular 

matrix production.249 Studies have shown that deletion of CTGF reduces fibrosis.250 This 

decrease could potentially translate to reduced scar formation in vivo, which if combined 

with improved angiogenesis could lead to replacement of the lost tissue or enhanced 

survival of the host tissue.  The benefit of hypoxia-derived CPC exosomes could be due 



www.manaraa.com

 99 

to the increased levels of miR-17,251-253, -199a,254 -210,244 and -292,254 all of which have 

been demonstrated or predicted to regulate fibrosis. 

Cells have been shown to alter the secretion of bioactive molecules in varying 

conditions, including hypoxia.214 We examined extracellular miR release following 3 or 

12 hours by microarray.  Of those upregulated at least 2-fold by hypoxia at the 12 hour 

time point, we found that of the 11 miRs upregulated, seven were encapsulated by 

exosomes as confirmed by qRT-PCR. When we conducted a literature search on the 

upregulated miRs, we found most to regulate cardiac functions. We found that none of 

our eleven upregulated miRs have been previously discovered to regulate cardiac 

functions, though the human analog of miR-15b is upregulated in the circulation of 

patients with critical limb ischemia.255 These novel findings are therefore extremely 

useful to the scientific community, as a major development needed in the nascent 

cardiac exosome field is the characterization of exosomal contents. This will lead to 

better biomarkers for pathology and more effective therapeutics.  

Our array studies generated lots of data that may be difficult to attribute to a 

specific function.  Indeed, we measured over 750 mature miRs and found changes at the 

3 and 12 hour time point. To understand these data and potentially identify miR clusters 

that may regulate function, we employed principle component and partial least squares 

regression analyses and compared the effects of treatment conditions for exosome 

generation (cues) on specific miR levels (signals) and eventual physiological responses 

(tube formation, CTGF mRNA levels). This method served as a statistical instrument to 

generate a theoretical hypothesis based on empirical data. Whereas the exosomes 

initially explored for function were produced following 12 hours of normoxia or hypoxia, 

to generate and validate our model we also produced and examined the secreted 

miRnome of exosomes generated during 3 hours of hypoxia and normoxia. 
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We first examined the principle component analysis on the normalized data from 

the microarray to identify miR clusters that co-vary based on treatment condition. We 

were surprised to find that the majority of miRs clearly grouped into four major clusters.  

The black cluster is pro-hypoxic and blue is the opposite.  Red and green clusters do not 

respond to hypoxia (zero projection onto PC2, the hypoxia axis), but are the effects due 

to another currently unknown mechanism.  More interestingly, three of the 11 miRs 

secreted by CPCs and cluster with three of the groups miR-292 with the blue group, 

miR-20a with the green group, and mir-17 with the red group, but the others contribute to 

both oxygen treatment and time component induced cellular responses.  This is denoted 

by the magnitude of their distance from axes of PC2 and PC3. 

Our PLSR analysis first evaluated the total miR array results to establish a 

relationship between signals (individual miR levels) responding to the cues of exosome-

generating conditions and the downstream responses. Then the VIP (Variable 

Importance of Projection) were calculated to determine which signals have greatest 

projection/contribution towards a phenotypic outcome. We were surprised to observe 

such clear separation of 12 hr normoxic and hypoxic exosomes in the cues plot, and the 

clear separation of the tube formation and fibrosis in the response plot as well. More, 

CTGF mRNA levels co-vary with 12 hr normoxic exosome cues and tube formation co-

varies with 12 hr hypoxic exosome cues.  Of these top 100 miRs, it can be seen which 

miRs co-vary with CTGF mRNA and which co-vary with tube formation, that identify 

which miRs may be targeted for further investigation into these outcomes. 

To validate our computational model, we performed tube formation experiments 

with exosomes from CPCs exposed to hypoxia or normoxia for 3 hours. Whereas the 

separation of the 12 hour normoxic and hypoxic exosomes in the cues plot was profound, 

3 hour exosomes were hardly separated, predicting little difference in their effect on tube 

formation. When we performed our tube formation experiments with the 3 hour 
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exosomes, we saw no difference in their effects, validating the PLSR model. 

Interestingly, the model predicted that had any significant difference been observed, 3 

hour normoxic exosomes might have enhanced tube formation, albeit very minor. This is 

in contrast to the 12 hour exosomes, indicating that CPCs alter the exosome miR load 

not only as a function of oxygen levels, but also how long the CPCs are subjected to the 

conditions. 

A new PLSR model was created trained on the 11 upregulated miRs identified by 

microRNA array. This is the benefit of PLSR, in that it allows the reduction of large 

datasets to smaller, more informative datasets, reducing experimental burden while 

maintaining integrity and predictability of a dataset.  Figure 5.7 reflects that the 11 miRs 

actually maintain 98% predictability for the outcomes of tube formation and CTGF 

expression, while the full set of 383 miRs has closer to 100% predictability. Of note is the 

high scoring of miR-292, predicting its role as highly influential on tube formation and 

fibrosis. Studies are underway to determine the effects of miR-292 on tube formation 

and CTGF expression. 

In this report we show that CPCs release a beneficial signal in response to 

hypoxia, but that the population in vivo is likely too small to exert a substantial effect. We 

confirmed that CPCs secrete exosomes under both normoxic and hypoxic conditions, 

and that miR content is dynamically regulated based on time as well. Exosomes 

generated under hypoxic conditions for 12 hours enhanced endothelial tube formation 

and attenuated CTGF mRNA levels in stimulated fibroblasts, supporting the potential of 

hypoxia-derived exosomes as a potential therapeutic agent. Based on our results, we 

developed an empirically derived computational model to determine how exosome-

generating conditions, miRs, and physiological responses co-vary. Our findings support 

the development of hypoxic CPC-derived exosomes as naturally derived therapeutics 

and lay the groundwork for statistical models that—by characterizing the relationship 
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among exosome generating conditions, miR regulation, and physiological responses—

can lead to bio-inspired therapeutics of rational design. 
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CHAPTER 6 

PERSPECTIVES AND FUTURE DIRECTIONS 

 
 
 

6.1 GlcNAc and PCADK particles 

Since their development in our collaborating lab in 2006, the pH-sensitive 

polyketal polymers—of which PCADK is a member—have been explored in a range of 

therapeutic settings, with the biocompatibility of their degradation products being a key 

benefit. The polymer has been used to form non-water soluble micro- and nanoparticles 

and shown to encapsulate small molecules and proteins. However, our study was the 

first to decorate the surface with ligands to trigger uptake by non-phagocytic cells. 

Cardiomyocytes internalized the particles for the intracellular delivery of an anti-apoptotic 

molecule, and we found decreased myocyte death and improved cardiac function in a rat 

IR model. 

Our in vivo findings were crucial, as our delivery system addressed the acute 

phase wherein apoptotic pathways are triggered immediately during and after MI. 

However, long-term effects of our novel system would be important to explore. We may 

find that decreased myocyte death leads to a reduced pressure overload and less 

fibrotic scarring. Additionally, an influx of the phagocytic macrophages presents another 

opportunity; that a combination of delivery of these PK-GlcNAc-SB particles to both 

moycytes and macrophages could create a synergestic effect to attenuate cardiac 

dysregulation. Another application of PK-GlcNAc particles worth exploring is the delivery 

of cell-impermeant proteins to CMs, as this would open delivery of a large class of 

protective proteins to ischemic myocytes. 
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Recent findings out of a research lab at University of Louisville has demonstrated 

the cardioprotective effects of GlcNAc on CMs256 and CPCs257, potentially enhancing the 

therapeutic effects of GlcNAc-presenting delivery systems. In fact, one of our 

collaborators has been evaluating the regenerative potential of empty PK-GlcNAc 

particles. Since the completion of our work as it currently stands, nine research articles 

have been published on polyketal particles,258-265 indicating the increasing interest in the 

scientific community on these particles as delivery vehicles. 

6.2 Regio-selectively decorated dendrimers 

We found that our RGD-bowtie effectively transfected cells with miR by 

enhancing angiogenesis, increasing cell proliferation. Importantly, our dendrimeric 

vehicle did not exhibit cytotoxicity, an effect that many dendrimers elicit. Depending on 

application, cellular toxicity may be a benefit or undesirable, but as we aim to create a 

pro-regenerative environment, toxicity would be deleterious. 

Our finding that different materials elicit different responses is not entirely 

surprising; the processes between internalization of miR-loaded vehicles and cell 

proliferation or tube formation is complex and may be perturbed by various material 

features. In addition to tuning vehicle design for desired extracellular interactions and 

uptake, investigation of the intracellular interactions and subsequent effects are essential 

in the development of effective transfection vehicles. The bowtie template affords a wide 

range of possibilities for tuning parameters and properties, such as ligand and charge 

densities, dendron size, and incorporation of other specialized bioactive groups (e.g., 

aptamers, saccharides, and antibodies).14 In turn, these design alterations may influence 

binding avidity and specificity, multivalent interactions, cargo capacity, cytotoxicity, 

endosomal escape, immunogenicity, and stability. Keeping these research 

considerations in mind, we plan on further developing our bowtie structure in the near 



www.manaraa.com

 105 

term by increasing RGD peptide density on RGD-bowtie and N/P ratio to further 

enhance transfection. In the long term, we will characterize uptake kinetics in relation to 

ligand density and dendrimer size, examine the electrostatic binding and loading of miR 

to the cationic region of the bowtie, and investigate bowtie modification with other 

ligands to enhance uptake and cell specificity.  

In in vivo application, a single dose of the dendrimer bowtie may transfect the 

cells in the acute phase. However, should the infarct become reperfused, the small size 

and solubility of these dendrimers may allow their clearance. A strategy for prolonged 

treatment may be loading the bowties into a hydrogel for sustained delivery and regional 

retention. 

6.3 Exosomes and the heart 

Previous findings have shown the benefit of the secretome of CPCs in treating 

the MI heart, but ours was the first to study how exosomes generated in hypoxic 

conditions—that mimic ischemia—might affect the physiology of cardiac cells. We found 

them to improve the tube formation of cardiac endothelial cells and reduce fibrotic mRNA 

in cardiac fibroblasts. This may have the effects of enhancing blood flow to the infarct 

and reducing non-contractile scar formation. Additionally, we found several miRs to be 

upregulated in hypoxic exosomes. While we correlated upregulated exosomal miRs with 

beneficial cellular effects, we have yet to show causation. To do so, our plans in the near 

future include inhibiting the ribonucleic acid-induced silencing complex (RISC) and 

observing reducing impact of hypoxic exosomes. Additionally, as our study postulated a 

role of miR-292 (that has heretofore been unexplored), we will repeat our cell 

experiments with co-transfection of anti-mir-292. 

Our statistical modeling has provided insight into future bio-inspired therapeutics. 

With the knowledge that CPCs produce exosomes that may be internalized by cardiac 
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cells, engineering of these exosomes with miR cocktails may allow for tuned therapies. 

PC analysis identified miRs that co-varied and predicted their function. Creating a CPC 

line that overexpressed a desired miR cassette, and generating exosomes from the line 

may be one route for future therapies. 

The field of cardiac exosomes is in its infancy, and several broad questions 

remain to be answered, some of which we have attempted to address in part. Namely, 

how does the myocardium initiate the local repair process? Are exosomes shuttles for 

unwanted material, or cell-cell communicators? Do secreted exosomes from the heart 

have any physiological function? Do secreted cardiac exosomes function in autocrine, 

paracrine, or endocrine signaling, or a combination? If one of their roles is endocrine, 

then could they be recruiting cells, such as bone marrow, to the infarct and conditioning 

them en route? Research efforts to answer these questions will yield a greater 

understanding of the heart and provide for development of naturally derived therapies 

that leverage endogenous mechanisms. 

  



www.manaraa.com

 107 

REFERENCES 

 
 
 
1. Morbidity & mortality: 2012 chart book on cardiovascular, lung, and blood 

diseases. Health NIo. 2012. 

2. Maulik N, Yoshida T, Das D. Oxidative stress developed during the reperfusion of 
ischemic myocardium induces apoptosis. Free Radical Biology and Medicine. 
1998;24:869-875 

3. Bialik S, Geenen D, Sasson I, Cheng R, Horner J, Evans S, Lord E, Koch C, 
Kitsis R. Myocyte apoptosis during acute myocardial infarction in the mouse 
localizes to hypoxic regions but occurs independently of p53. Journal of Clinical 
Investigation. 1997;100:1363 

4. McGill CJ, Brooks G. Cell cycle control mechanisms and their role in cardiac 
growth. Cardiovascular research. 1995;30:557-569 

5. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami C, Anversa P. Myocyte 
proliferation in end-stage cardiac failure in humans. Proceedings of the National 
Academy of Sciences of the United States of America. 1998;95:8801 

6. Garg S, Narula J, Chandrashekhar Y. Apoptosis and heart failure: Clinical 
relevance and therapeutic target. Journal of Molecular and Cellular Cardiology. 
2005;38:73-79 

7. Buja LM, Vela D. Cardiomyocyte death and renewal in the normal and diseased 
heart. Cardiovascular Pathology. 2008:1-26 

8. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions 
in an antioxidant pathway to prevent apoptosis. Cell. 1993;75:241-251 

9. Maulik N, Yoshida T, Das DK. Oxidative stress developed during the reperfusion 
of ischemic myocardium induces apoptosis. Free radical biology & medicine. 
1998;24:869-875 

10. Huang J, Ito Y, Morikawa M, Uchida H, Kobune M, Sasaki K, Abe T, Hamada H. 
Bcl-xl gene transfer protects the heart against ischemia/reperfusion injury. 
Biochemical and Biophysical Research Communications. 2003;311:64-70 

11. Potts MB. Reduced apaf-1 levels in cardiomyocytes engage strict regulation of 
apoptosis by endogenous xiap. The Journal of Cell Biology. 2005;171:925-930 

12. Khaper N, Kaur K, Li T, Farahmand F, Singal P. Antioxidant enzyme gene 
expression in congestive heart failure following mycardial infarction. Molecular 
and Cellular Biochemistry. 2003;251:9-15 

13. Broderick JA, Zamore PD. Microrna therapeutics. Gene Therapy. 2011;18:1104-
1110 



www.manaraa.com

 108 

14. Peer D, Lieberman J. Special delivery: Targeted therapy with small rnas. Gene 
Therapy. 2011;18:1127-1133 

15. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating micrornas: Biomarkers or 
mediators of cardiovascular diseases? Arteriosclerosis, Thrombosis, and 
Vascular Biology. 2011;31:2383-2390 

16. Liu N, Olson E. Microrna regulatory networks in cardiovascular development. 
Developmental Cell. 2010;18:510-525 

17. Yue J. Mirna and vascular cell movement. Advanced Drug Delivery Reviews. 
2011;63:616-622 

18. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BHL. Overexpression of bcl-2 
attenuates apoptosis and protects against myocardial i/r injury in transgenic mice. 
American Journal of Physiology-Heart and Circulatory Physiology. 
2001;280:H2313 

19. Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BHL. 
Overexpression of mnsod protects against myocardial ischemia/reperfusion 
injury in transgenic mice. Journal of Molecular and Cellular Cardiology. 
1998;30:2281-2289 

20. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nature Reviews 
Drug Discovery. 2003;2:214-221 

21. Hsieh PCH, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of 
pdgf-bb for myocardial protection using injectable self-assembling peptide 
nanofibers. Journal of Clinical Investigation. 2006;116:237-248 

22. Lee S, Murthy N. Targeted delivery of catalase and superoxide dismutase to 
macrophages using folate. Biochemical and Biophysical Research 
Communications. 2007;360:275-279 

23. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: 
Pathophysiology and therapy. Circulation. 2000;101:2981 

24. Aso S, Ise H, Takahashi M, Kobayashi S, Morimoto H, Izawa A, Goto M, Ikeda U. 
Effective uptake of n-acetylglucosamine-conjugated liposomes by 
cardiomyocytes in vitro. Journal of Controlled Release. 2007;122:189-198 

25. Ise H, Kobayashi S, Goto M, Sato T, Kawakubo M, Takahashi M, Ikeda U, 
Akaike T. Vimentin and desmin possess glcnac-binding lectin-like properties on 
cell surfaces. Glycobiology. 2010;20:843 

26. Nam HY, Nam K, Lee M, Kim SW, Bull DA. Dendrimer type bio-reducible 
polymer for efficient gene delivery. Journal of Controlled Release. 2012;160:592-
600 

27. Behlke MA. Chemical modification of sirnas for in vivo use. Oligonucleotides. 
2008;18:305-319 



www.manaraa.com

 109 

28. Yan Y, Such GK, Johnston AP, Best JP, Caruso F. Engineering particles for 
therapeutic delivery: Prospects and challenges. ACS nano. 2012;6:3663-3669 

29. Shive MS, Anderson JM. Biodegradation and biocompatibility of pla and plga 
microspheres. Advanced drug delivery reviews. 1997;28:5-24 

30. Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N. Polyketal microparticles: A 
new delivery vehicle for superoxide dismutase. Bioconjugate Chemistry. 
2007;18:4-7 

31. Sy J, Phelps E, García A, Murthy N, Davis M. Surface functionalization of 
polyketal microparticles with nitrilotriacetic acid-nickel complexes for efficient 
protein capture and delivery. Biomaterials. 2010;31:4987-4994 

32. Sy J, Seshadri G, Yang S, Brown M, Oh T, Dikalov S, Murthy N, Davis M. 
Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits 
cardiac dysfunction. Nature Materials. 2008;7:863-868 

33. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: From 
physical, photophysical, and supramolecular properties to applications in sensing, 
catalysis, molecular electronics, photonics, and nanomedicine. Chemical 
Reviews (Washington, DC, United States). 2010;110:1857-1959 

34. Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated 
dendrimers for targeted drug delivery: A concise review. Interface focus. 
2012;2:307-324 

35. Soliman G, Sharma A, Maysinger D, Kakkar A. Dendrimers and miktoarm 
polymers based multivalent nanocarriers for efficient and targeted drug delivery. 
Chemical Communications (Cambridge, United Kingdom). 2011;47:9572-9587 

36. Jain K, Kesharwani P, Gupta U, Jain N. Dendrimer toxicity: Let&apos;s meet the 
challenge. International Journal of Pharmaceutics. 2010;394:122-142 

37. Kang H, DeLong R, Fisher M, Juliano R. Tat-conjugated pamam dendrimers as 
delivery agents for antisense and sirna oligonucleotides. Pharmaceutical 
Research. 2005;22:2099-2106 

38. Liu J, Zhou J, Luo Y. Sirna delivery systems based on neutral cross-linked 
dendrimers. Bioconjugate Chemistry. 2012;23:174-183 

39. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Banaszak Holl MM. The 
binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. 
Chemistry & Biology (Cambridge, MA, United States). 2007;14:107-115 

40. Waite CL, Roth CM. Binding and transport of pamam-rgd in a tumor spheroid 
model: The effect of rgd targeting ligand density. Biotechnology and 
bioengineering. 2011;108:2999-3008 

41. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, 
Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. 



www.manaraa.com

 110 

Adult cardiac stem cells are multipotent and support myocardial regeneration. 
Cell. 2003;114:763-776 

42. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor 
cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle 
lineages. Dev Cell. 2006;11:723-732 

43. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo 
C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, 
Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and 
multipotent and regenerate infarcted myocardium, improving cardiac function. 
Proceedings of the National Academy of Sciences of the United States of 
America. 2005;102:8966-8971 

44. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald 
F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. 
Transplantation of progenitor cells and regeneration enhancement in acute 
myocardial infarction (topcare-ami). Circulation. 2002;106:3009-3017 

45. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, 
Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, 
Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial 
infarction: The boost randomised controlled clinical trial. Lancet. 2004;364:141-
148 

46. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, 
El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP. Reduction of 
myocardial infarct size by human mesenchymal stem cell conditioned medium. 
Stem cell research. 2007;1:129-137 

47. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, 
Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn 
DP. Human mesenchymal stem cell-conditioned medium improves cardiac 
function following myocardial infarction. Stem cell research. 2011;6:206-214 

48. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers 
L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome 
secreted by msc reduces myocardial ischemia/reperfusion injury. Stem cell 
research. 2010;4:214-222 

49. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford 
ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard 
VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, 
Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, 
McGuire DK, Mohler ER, 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, 
Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, 
Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics--
2014 update: A report from the american heart association. Circ. 2014;129:e28-
e292 



www.manaraa.com

 111 

50. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: Subsets and functions. 
Nature reviews. Cardiology. 2010;7:77-86 

51. Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. 
Journal of the American College of Cardiology. 2007;50:2173-2195 

52. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined--
a consensus document of the joint european society of cardiology/american 
college of cardiology committee for the redefinition of myocardial infarction. 
Journal of the American College of Cardiology. 2000;36:959-969 

53. French JK, White HD. Clinical implications of the new definition of myocardial 
infarction. Heart. 2004;90:99-106 

54. Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: The present 
and the future. Journal of the American College of Cardiology. 2006;48:1-11 

55. Jaffe AS, Ravkilde J, Roberts R, Naslund U, Apple FS, Galvani M, Katus H. It's 
time for a change to a troponin standard. Circulation. 2000;102:1216-1220 

56. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, 
Passamani E, Roberts R, Robertson T, et al. Circadian variation in the frequency 
of onset of acute myocardial infarction. The New England journal of medicine. 
1985;313:1315-1322 

57. Moe KT, Wong P. Current trends in diagnostic biomarkers of acute coronary 
syndrome. Annals of the Academy of Medicine, Singapore. 2010;39:210-215 

58. Isbell DC, Kramer CM. Cardiovascular magnetic resonance: Structure, function, 
perfusion, and viability. Journal of nuclear cardiology : official publication of the 
American Society of Nuclear Cardiology. 2005;12:324-336 

59. Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE, Niessen HW. Apoptosis 
in myocardial ischaemia and infarction. Journal of clinical pathology. 
2002;55:801-811 

60. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, 3rd, Criqui 
M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Jr., Taubert K, 
Tracy RP, Vinicor F. Markers of inflammation and cardiovascular disease: 
Application to clinical and public health practice: A statement for healthcare 
professionals from the centers for disease control and prevention and the 
american heart association. Circulation. 2003;107:499-511 

61. Pack D, Putnam D, Langer R. Design of imidazole-containing endosomolytic 
biopolymers for gene delivery. Biotechnology and Bioengineering. 2000;67:217-
223 

62. Murthy N, Robichaud J, Tirrell D, Stayton P, Hoffman A. The design and 
synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled 
Release. 1999;61:137-143 



www.manaraa.com

 112 

63. Stayton P, Hoffman A, Murthy N, Lackey C, Cheung C, Tan P, Klumb L, Chilkoti 
A, Wilbur F, Press O. Molecular engineering of proteins and polymers for 
targeting and intracellular delivery of therapeutics. Journal of Controlled Release. 
2000;65:203-220 

64. Kyriakides T, Cheung C, Murthy N, Bornstein P, Stayton P, Hoffman A. Ph-
sensitive polymers that enhance intracellular drug delivery in vivo. Journal of 
Controlled Release. 2002;78:295-303 

65. Pack D, Hoffman A, Pun S, Stayton P. Design and development of polymers for 
gene delivery. Nature Reviews Drug Discovery. 2005;4:581-593 

66. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Design and synthesis 
of ph-responsive polymeric carriers that target uptake and enhance the 
intracellular delivery of oligonucleotides. J Control Release. 2003;89:365-374 

67. Gillies E, Goodwin A, Fréchet J. Acetals as ph-sensitive linkages for drug 
delivery. Bioconjugate Chem. 2004;15:1254-1263 

68. Chu C, Szoka F. Ph-sensitive liposomes. Journal of Liposome Research. 
1994;4:361-395 

69. Guo X, Szoka Jr F. Chemical approaches to triggerable lipid vesicles for drug 
and gene delivery. Acc. Chem. Res. 2003;36:335-341 

70. Song J, Hollingsworth R. Synthesis, conformational analysis, and phase 
characterization of a versatile self-assembling monoglucosyl diacylglycerol 
analog. J. Am. Chem. Soc. 1999;121:1851-1861 

71. Wong JB, Grosse S, Tabor AB, Hart SL, Hailes HC. Acid cleavable peg-lipids for 
applications in a ternary gene delivery vector. Mol Biosyst. 2008;4:532-541 

72. Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 
1996;17:103-114 

73. Zhu J, Munn R, Nantz M. Self-cleaving ortho ester lipids: A new class of ph-
vulnerable amphiphiles. J. Am. Chem. Soc. 2000;122:2645-2646 

74. Guo X, Szoka FC, Jr. Steric stabilization of fusogenic liposomes by a low-ph 
sensitive peg--diortho ester--lipid conjugate. Bioconjug Chem. 2001;12:291-300 

75. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired ph-
responsive polymers for the intracellular delivery of biomolecular drugs. 
Bioconjug Chem. 2003;14:412-419 

76. Murthy N, Thng Y, Schuck S, Xu M, Frechet J. A novel strategy for encapsulation 
and release of proteins: Hydrogels and microgels with acid-labile acetal cross-
linkers. J. Am. Chem. Soc. 2002;124:12398-12399 



www.manaraa.com

 113 

77. Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E. An acetal-based 
pegylation reagent for ph-sensitive shielding of DNA polyplexes. Bioconjug Chem. 
2007;18:1218-1225 

78. Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR. Elimination of 
prions by branched polyamines and implications for therapeutics. Proceedings of 
the National Academy of Sciences of the United States of America. 
1999;96:14529-14534 

79. Soto C, Kascsak RJ, Saborio GP, Aucouturier P, Wisniewski T, Prelli F, Kascsak 
R, Mendez E, Harris DA, Ironside J, Tagliavini F, Carp RI, Frangione B. 
Reversion of prion protein conformational changes by synthetic beta-sheet 
breaker peptides. Lancet. 2000;355:192-197 

80. Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, 
Rossolini GM, Bracci L. Antimicrobial activity of novel dendrimeric peptides 
obtained by phage display selection and rational modification. Antimicrobial 
agents and chemotherapy. 2005;49:2665-2672 

81. Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, Bernstein DI. 
Dendrimers, a new class of candidate topical microbicides with activity against 
herpes simplex virus infection. Antimicrobial agents and chemotherapy. 
2000;44:2471-2474 

82. Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, Bertozzi CR. 
Interfacing carbon nanotubes with living cells. Journal of the American Chemical 
Society. 2006;128:6292-6293 

83. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR. Boron 
nitride nanotubes are noncytotoxic and can be functionalized for interaction with 
proteins and cells. Journal of the American Chemical Society. 2009;131:890-891 

84. Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on 
water-soluble carbon nanotubes for drug loading and delivery. ACS nano. 
2007;1:50-56 

85. Sakai T, Alexandridis P. Mechanism of gold metal ion reduction, nanoparticle 
growth and size control in aqueous amphiphilic block copolymer solutions at 
ambient conditions. The journal of physical chemistry. B. 2005;109:7766-7777 

86. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D. Rgd-
conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and 
photothermal therapy. Mol Pharm. 2010;7:94-104 

87. Martin AL, Li B, Gillies ER. Surface functionalization of nanomaterials with 
dendritic groups: Toward enhanced binding to biological targets. Journal of the 
American Chemical Society. 2009;131:734-741 

88. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T. Dendrimer-
modified magnetic nanoparticles enhance efficiency of gene delivery system. 
Cancer research. 2007;67:8156-8163 



www.manaraa.com

 114 

89. Ghosh S, Saha A. Synthesis and spectral studies of cdte-dendrimer conjugates. 
Nanoscale research letters. 2009;4:937-941 

90. Svenson S. Dendrimers as versatile platform in drug delivery applications. 
European journal of pharmaceutics and biopharmaceutics : official journal of 
Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2009;71:445-
462 

91. Zhou Y, Guo Z, Zhang Y, Huang W, Zhou Y, Yan D. Hyperbranched 
polyamidoamines containing beta-cyclodextrin for controlled release of 
chlorambucil. Macromolecular bioscience. 2009;9:1090-1097 

92. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. In vitro and in vivo gene 
transfer by an optimized alpha-cyclodextrin conjugate with polyamidoamine 
dendrimer. Bioconjug Chem. 2003;14:342-350 

93. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor 
targeting by circulating ligands. Nat Biotechnol. 1997;15:542-546 

94. Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker Jr JR. Tumor 
angiogenic vasculature targeting with pamam dendrimer-rgd conjugates. Chem 
Commun (Camb). 2005:5739-5741 

95. Dijkgraaf I, Rijnders AY, Soede A, Dechesne AC, van Esse GW, Brouwer AJ, 
Corstens FH, Boerman OC, Rijkers DT, Liskamp RM. Synthesis of dota-
conjugated multivalent cyclic-rgd peptide dendrimers via 1,3-dipolar cycloaddition 
and their biological evaluation: Implications for tumor targeting and tumor 
imaging purposes. Organic & biomolecular chemistry. 2007;5:935-944 

96. Boswell CA, Eck PK, Regino CA, Bernardo M, Wong KJ, Milenic DE, Choyke PL, 
Brechbiel MW. Synthesis, characterization, and biological evaluation of integrin 
alphavbeta3-targeted pamam dendrimers. Molecular pharmaceutics. 2008;5:527-
539 

97. Wood KC, Azarin SM, Arap W, Pasqualini R, Langer R, Hammond PT. Tumor-
targeted gene delivery using molecularly engineered hybrid polymers 
functionalized with a tumor-homing peptide. Bioconjug Chem. 2008;19:403-405 

98. Liu J, Liu J, Chu L, Wang Y, Duan Y, Feng L, Yang C, Wang L, Kong D. Novel 
peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung 
cancer. International journal of nanomedicine. 2011;6:59-69 

99. Lempens EH, Merkx M, Tirrell M, Meijer EW. Dendrimer display of tumor-homing 
peptides. Bioconjugate Chemistry. 2011;22:397-405 

100. Barrett GL, Trieu J, Naim T. The identification of leptin-derived peptides that are 
taken up by the brain. Regul Pept. 2009;155:55-61 

101. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, Tseng IC, Wang JJ, 
Yen TC, Chen PY, Wei KC. Magnetic resonance monitoring of focused 
ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the 



www.manaraa.com

 115 

brain. Proceedings of the National Academy of Sciences of the United States of 
America. 2010;107:15205-15210 

102. Benito JM, Gomez-Garcia M, Ortiz Mellet C, Baussanne I, Defaye J, Garcia 
Fernandez JM. Optimizing saccharide-directed molecular delivery to biological 
receptors: Design, synthesis, and biological evaluation of glycodendrimer-
cyclodextrin conjugates. Journal of the American Chemical Society. 
2004;126:10355-10363 

103. Arima H, Chihara Y, Arizono M, Yamashita S, Wada K, Hirayama F, Uekama K. 
Enhancement of gene transfer activity mediated by mannosylated 
dendrimer/alpha-cyclodextrin conjugate (generation 3, g3). J Control Release. 
2006;116:64-74 

104. Wu P, Chen X, Hu N, Tam UC, Blixt O, Zettl A, Bertozzi CR. Biocompatible 
carbon nanotubes generated by functionalization with glycodendrimers. Angew 
Chem Int Ed Engl. 2008;47:5022-5025 

105. Medina SH, Tekumalla V, Chevliakov MV, Shewach DS, Ensminger WD, El-
Sayed ME. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer 
cell-targeted carriers. Biomaterials. 2011;32:4118-4129 

106. Kobayashi H, Brechbiel MW. Nano-sized mri contrast agents with dendrimer 
cores. Advanced Drug Delivery Reviews. 2005;57:2271-2286 

107. Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, Brechbiel MW. 
Pharmacokinetics and enhancement patterns of macromolecular mr contrast 
agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med. 
2001;46:1169-1173 

108. Liu J, Zhou J, Luo Y. Sirna delivery systems based on neutral cross-linked 
dendrimers. Bioconjug Chem. 2012;23:174-183 

109. Han L, Zhang A, Wang H, Pu P, Jiang X, Kang C, Chang J. Tat-bmps-pamam 
conjugates enhance therapeutic effect of small interference rna on u251 glioma 
cells in vitro and in vivo. Human gene therapy. 2010;21:417-426 

110. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, 
Castaigne JP, Beliveau R. Involvement of the low-density lipoprotein receptor-
related protein in the transcytosis of the brain delivery vector angiopep-2. J 
Neurochem. 2008;106:1534-1544 

111. Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C. Gene 
delivery targeted to the brain using an angiopep-conjugated polyethyleneglycol-
modified polyamidoamine dendrimer. Biomaterials. 2009;30:6976-6985 

112. Huang S, Li J, Han L, Liu S, Ma H, Huang R, Jiang C. Dual targeting effect of 
angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials. 
2011;32:6832-6838 



www.manaraa.com

 116 

113. Darbre T, Reymond JL. Glycopeptide dendrimers for biomedical applications. 
Current topics in medicinal chemistry. 2008;8:1286-1293 

114. Lagnoux D, Darbre T, Schmitz ML, Reymond JL. Inhibition of mitosis by 
glycopeptide dendrimer conjugates of colchicine. Chemistry. 2005;11:3941-3950 

115. Agrawal P, Gupta U, Jain NK. Glycoconjugated peptide dendrimers-based 
nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials. 
2007;28:3349-3359 

116. Bhadra D, Yadav AK, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate 
carriers of primaquine phosphate for liver targeting. International journal of 
pharmaceutics. 2005;295:221-233 

117. Sebestik J, Niederhafner P, Jezek J. Peptide and glycopeptide dendrimers and 
analogous dendrimeric structures and their biomedical applications. Amino acids. 
2011;40:301-370 

118. Comelli EM, Head SR, Gilmartin T, Whisenant T, Haslam SM, North SJ, Wong 
NK, Kudo T, Narimatsu H, Esko JD, Drickamer K, Dell A, Paulson JC. A focused 
microarray approach to functional glycomics: Transcriptional regulation of the 
glycome. Glycobiology. 2006;16:117-131 

119. Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, 
Sasisekharan R. Advancing glycomics: Implementation strategies at the 
consortium for functional glycomics. Glycobiology. 2006;16:82R-90R 

120. Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. 
Circ Res. 2014;114:333-344 

121. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation 
during reticulocyte maturation. Association of plasma membrane activities with 
released vesicles (exosomes). The Journal of biological chemistry. 
1987;262:9412-9420 

122. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. Indirect activation 
of naive cd4+ t cells by dendritic cell-derived exosomes. Nature immunology. 
2002;3:1156-1162 

123. Thery C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and 
function. Nature reviews. Immunology. 2002;2:569-579 

124. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-
mediated transfer of mrnas and micrornas is a novel mechanism of genetic 
exchange between cells. Nat Cell Biol. 2007;9:654-U672 

125. Boon RA, Vickers KC. Intercellular transport of micrornas. Arterioscl Throm Vas. 
2013;33:186-192 



www.manaraa.com

 117 

126. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. Micrornas 
are transported in plasma and delivered to recipient cells by high-density 
lipoproteins. Nat Cell Biol. 2011;13:423-U182 

127. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating micrornas biomarkers or 
mediators of cardiovascular diseases? Arterioscl Throm Vas. 2011;31:2383-2390 

128. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, 
Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T. Let-7 microrna 
family is selectively secreted into the extracellular environment via exosomes in a 
metastatic gastric cancer cell line. Plos One. 2010;5 

129. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of sirna to 
the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 
2011;29:341-345 

130. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry 
WT, Jr., Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles 
transport rna and proteins that promote tumour growth and provide diagnostic 
biomarkers. Nat Cell Biol. 2008;10:1470-1476 

131. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, 
Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, 
Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanism of transfer of 
functional micrornas between mouse dendritic cells via exosomes. Blood. 
2012;119:756-766 

132. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi 
E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S. 
Microenvironmental ph is a key factor for exosome traffic in tumor cells. J Biol 
Chem. 2009;284:34211-34222 

133. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte-'t Hoen EN, 
Piper MG, Sivaraman S, Skog J, Thery C, Wauben MH, Hochberg F. 
Standardization of sample collection, isolation and analysis methods in 
extracellular vesicle research. Journal of extracellular vesicles. 2013;2 

134. Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system 
and use in emerging therapies. Frontiers in physiology. 2012;3:228 

135. Barile L, Gherghiceanu M, Popescu LM, Moccetti T, Vassalli G. Ultrastructural 
evidence of exosome secretion by progenitor cells in adult mouse myocardium 
and adult human cardiospheres. Journal of biomedicine & biotechnology. 
2012;2012:354605 

136. Manole CG, Cismasiu V, Gherghiceanu M, Popescu LM. Experimental acute 
myocardial infarction: Telocytes involvement in neo-angiogenesis. Journal of 
cellular and molecular medicine. 2011;15:2284-2296 

137. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, Kamide CE, Liu T, 
Gupta R, Sahoo S, Misener S, Kishore R, Losordo DW. Sonic hedgehog-



www.manaraa.com

 118 

modified human cd34+ cells preserve cardiac function after acute myocardial 
infarction. Circ Res. 2012;111:312-321 

138. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, 
Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW. Exosomes 
from human cd34(+) stem cells mediate their proangiogenic paracrine activity. 
Circ Res. 2011;109:724-728 

139. Zhang H-G. Emerging concepts of tumor exosome-mediated cell-cell 
communication. New York: Springer; 2013. 

140. Vrijsen KR, Sluijter JP, Schuchardt MW, van Balkom BW, Noort WA, Chamuleau 
SA, Doevendans PA. Cardiomyocyte progenitor cell-derived exosomes stimulate 
migration of endothelial cells. Journal of cellular and molecular medicine. 
2010;14:1064-1070 

141. Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, 
Tang Y. Cardiac progenitor-derived exosomes protect ischemic myocardium from 
acute ischemia/reperfusion injury. Biochemical and biophysical research 
communications. 2013;431:566-571 

142. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, 
Ferguson TB, Ford E, Furie K, Gillespie C. Heart disease and stroke statistics--
2010 update: A report from the american heart association. Circulation. 
2010;121:e46 

143. Maulik N, Yoshida T, Das DK. Oxidative stress developed during the reperfusion 
of ischemic myocardium induces apoptosis. Free Radic. Biol. Med. 1998;24:869-
875 

144. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, 
Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the 
mouse localizes to hypoxic regions but occurs independently of p53. Journal of 
Clinical Investigation. 1997;100:1363 

145. McGill CJ, Brooks G. Cell cycle control mechanisms and their role in cardiac 
growth. Cardiovascular Research. 1995;30:557-569 

146. Rumyantsev PP. Interrelations of the proliferation and differentiation processes 
during cardiac myogenesis and regeneration. International Review of Cytology. 
1977;51:187-273 

147. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte 
proliferation in end-stage cardiac failure in humans. Proceedings of the National 
Academy of Sciences of the United States of America. 1998;95:8801 

148. Park M, Shen YT, Gaussin V, Heyndrickx GR, Bartunek J, Resuello RRG, 
Natividad FF, Kitsis RN, Vatner DE, Vatner SF. Apoptosis predominates in 
nonmyocytes in heart failure. American Journal of Physiology-Heart and 
Circulatory Physiology. 2009;297:H785 



www.manaraa.com

 119 

149. Maulik N, Engelman RM, Rousou JA, Flack III JE, Deaton D, Das DK. Ischemic 
preconditioning reduces apoptosis by upregulating anti-death gene bcl-2. 
Circulation. 1999;100:II-369 

150. Jolly S, Kane W, Bailie M, Abrams G, Lucchesi B. Canine myocardial reperfusion 
injury. Its reduction by the combined administration of superoxide dismutase and 
catalase. Circ Res. 1984;54:277 

151. Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. 
Cytoprotection by jun kinase during nitric oxide-induced cardiac myocyte 
apoptosis. Circ Res. 2001;88:305 

152. Minamino T, Yujiri T, Papst PJ, Chan ED, Johnson GL, Terada N. Mekk1 
suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived 
cardiac myocytes. Proceedings of the National Academy of Sciences of the 
United States of America. 1999;96:15127 

153. Franke TF, Kaplan DR, Cantley LC. Pi3k: Downstream aktion blocks apoptosis. 
Cell. 1997;88:435 

154. Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J, Chien KR. Cardiac muscle 
cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-
activated protein kinase family. Journal of Biological Chemistry. 1998;273:2161 

155. Chua CC, Gao J, Ho YS, Xiong Y, Xu X, Chen Z, Hamdy RC, Chua BHL. 
Overexpression of iap-2 attenuates apoptosis and protects against myocardial 
ischemia/reperfusion injury in transgenic mice. Biochimica et Biophysica Acta 
(BBA)-Molecular Cell Research. 2007;1773:577-583 

156. Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP. Transgenic a1 
adenosine receptor overexpression increases myocardial resistance to ischemia. 
Proceedings of the National Academy of Sciences of the United States of 
America. 1997;94:6541 

157. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, 
Hajjar RJ, Rosenzweig A. Akt activation preserves cardiac function and prevents 
injury after transient cardiac ischemia in vivo. Circulation. 2001;104:330 

158. Vemuri S, Rhodes C. Preparation and characterization of liposomes as 
therapeutic delivery systems: A review. Pharmaceutica Acta Helvetiae. 
1995;70:95-111 

159. Seshadri G, Sy JC, Brown M, Dikalov S, Yang SC, Murthy N, Davis ME. The 
delivery of superoxide dismutase encapsulated in polyketal microparticles to rat 
myocardium and protection from myocardial ischemia-reperfusion injury. 
Biomaterials. 2010;31:1372-1379 

160. Yuan XB, Gu MQ, Kang CS, Zhao YH, Tian NJ, Pu PY, Sheng J. Surface 
biofunctionalization of pla nanoparticles through amphiphilic polysaccharide 
coating and ligand coupling: Evaluation of biofunctionalization and drug releasing 
behavior. Carbohyd Polym. 2007;67:417-426 



www.manaraa.com

 120 

161. Granger BL, Lazarides E. Desmin and vimentin coexist at the periphery of the 
myofibril z disc. Cell. 1979;18:1053-1063 

162. Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet 
C, Paulin D. Desmin is essential for the tensile strength and integrity of myofibrils 
but not for myogenic commitment, differentiation, and fusion of skeletal muscle. 
The Journal of Cell Biology. 1997;139:129-144 

163. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, 
Ashworth A, Marshall CJ, Sugden PH. Stimulation of the stress-activated 
mitogen-activated protein kinase subfamilies in perfused heart. P38/rk mitogen-
activated protein kinases and c-jun n-terminal kinases are activated by 
ischemia/reperfusion. Circulation research. 1996;79:162-173 

164. Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T. The 
stress-activated protein kinases are major c-jun amino-terminal kinases activated 
by ischemia and reperfusion. The Journal of biological chemistry. 
1994;269:26546-26551 

165. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J. 
Tissue specific pattern of stress kinase activation in ischemia/reperfused heart 
and kidney. Journal of Biological Chemistry. 1997;272:19943-19950 

166. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, Durand DJ, 
Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman 
AW, Hare JM. Cardiac repair with intramyocardial injection of allogeneic 
mesenchymal stem cells after myocardial infarction. Proceedings of the National 
Academy of Sciences of the United States of America. 2005;102:11474-11479 

167. Krause K, Jaquet K, Schneider C, Haupt S, Lioznov MV, Otte KM, Kuck KH. 
Percutaneous intramyocardial stem cell injection in patients with acute 
myocardial infarction: First-in-man study. Heart. 2009;95:1145-1152 

168. Herreros J, Prosper F, Perez A, Gavira JJ, Garcia-Velloso MJ, Barba J, Sanchez 
PL, Canizo C, Rabago G, Marti-Climent JM, Hernandez M, Lopez-Holgado N, 
Gonzalez-Santos JM, Martin-Luengo C, Alegria E. Autologous intramyocardial 
injection of cultured skeletal muscle-derived stem cells in patients with non-acute 
myocardial infarction. Eur Heart J. 2003;24:2012-2020 

169. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. 
Overexpression of insulin-like growth factor-1 in mice protects from myocyte 
death after infarction, attenuating ventricular dilation, wall stress, and cardiac 
hypertrophy. J Clin Invest. 1997;100:1991-1999 

170. Sabbah HN, Sharov VG, Gupta RC, Todor A, Singh V, Goldstein S. Chronic 
therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart 
failure. Journal of the American College of Cardiology. 2000;36:1698-1705 

171. Jones SP, Zachara NE, Ngoh GA, Hill BG, Teshima Y, Bhatnagar A, Hart GW, 
Marban E. Cardioprotection by n-acetylglucosamine linkage to cellular proteins. 
Circulation. 2008;117:1172 



www.manaraa.com

 121 

172. Gray WD, Che P, Brown M, Ning X, Murthy N, Davis ME. N-acetylglucosamine 
conjugated to nanoparticles enhances myocyte uptake and improves delivery of 
a small molecule p38 inhibitor for post-infarct healing. Journal of cardiovascular 
translational research. 2011;4:631-643 

173. Yan Y, Such GK, Johnston APR, Best JP, Caruso F. Engineering particles for 
therapeutic delivery: Prospects and challenges. ACS Nano. 2012;6:3663-3669 

174. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: From 
physical, photophysical, and supramolecular properties to applications in sensing, 
catalysis, molecular electronics, photonics, and nanomedicine. Chemical reviews. 
2010;110:1857-1959 

175. Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated 
dendrimers for targeted drug delivery: A concise review. Interface Focus. 
2012;2:307-324 

176. Soliman G, Sharma A, Maysinger D, Kakkar A. Dendrimers and miktoarm 
polymers based multivalent nanocarriers for efficient and targeted drug delivery. 
Chemical Communications. 2011;47:9572-9587 

177. Tomalia D. Birth of a new macromolecular architecture: Dendrimers as quantized 
building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer 
Science. 2005;30:294-324 

178. Waite CL, Roth CM. Pamam-rgd conjugates enhance sirna delivery through a 
multicellular spheroid model of malignant glioma. Bioconjugate Chemistry. 
2009;20:1908-1916 

179. Dufès C, Uchegbu I, Schatzlein A. Dendrimers in gene delivery. Advanced Drug 
Delivery Reviews. 2005;57:2177-2202 

180. Liu X, Liu J, Luo Y. Facile glycosylation of dendrimers for eliciting specific cell–
material interactions. Polymer Chemistry. 2012;3:310-313 

181. Shukla R, Thomas T, Peters J, Kotlyar A, Myc A, Baker Jr J. Tumor angiogenic 
vasculature targeting with pamam dendrimer–rgd conjugates. Chemical 
Communications. 2005:5739-5741 

182. Wolfenden ML, Cloninger MJ. Carbohydrate-functionalized dendrimers to 
investigate the predictable tunability of multivalent interactions. Bioconjugate 
Chemistry. 2006;17:958-966 

183. Schneider CA, Rasband WS, Eliceiri KW. Nih image to imagej: 25 years of image 
analysis. Nature Methods. 2012;9:671-675 

184. Bumcrot D, Manoharan M, Koteliansky V, Sah DWY. Rnai therapeutics: A 
potential new class of pharmaceutical drugs. Nature Chemical Biology. 
2006;2:711-719 



www.manaraa.com

 122 

185. Pecot C, Calin G, Coleman R, Lopez-Berestein G, Sood A. Rna interference in 
the clinic: Challenges and future directions. Nature Reviews Cancer. 2010;11:59-
67 

186. Gillies ER, Dy E, Fréchet JMJ, Szoka FC. Biological evaluation of polyester 
dendrimer:  Poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight 
and architecture. Molecular Pharmaceutics. 2005;2:129-138 

187. Gillies ER, Fréchet JMJ. Designing macromolecules for therapeutic 
applications:  Polyester dendrimerpoly(ethylene oxide) “bow-tie” hybrids with 
tunable molecular weight and architecture. Journal of the American Chemical 
Society. 2002;124:14137-14146 

188. Wu P, Malkoch M, Hunt JN, Vestberg R, Kaltgrad E, Finn MG, Fokin VV, 
Sharpless KB, Hawker CJ. Multivalent, bifunctional dendrimers prepared by click 
chemistry. Chemical Communications. 2005:5775-5777 

189. Gaertner HF, Cerini F, Kamath A, Rochat A-F, Siegrist C-A, Menin L, Hartley O. 
Efficient orthogonal bioconjugation of dendrimers for synthesis of bioactive 
nanoparticles. Bioconjugate Chemistry. 2011;22:1103-1114 

190. Tomalia D, Huang B, Swanson D, Brothers H, Klimash J. Structure control within 
poly (amidoamine) dendrimers: Size, shape and regio-chemical mimicry of 
globular proteins. Tetrahedron. 2003;59:3799-3813 

191. Gray WD, Wu RJ, Yin X, Zhou J, Davis ME, Luo Y. Dendrimeric bowties 
featuring hemispheric-selective decoration of ligands for microrna-based therapy. 
Biomacromolecules. 2013;14:101-109 

192. Stasko NA, Johnson CB, Schoenfisch MH, Johnson TA, Holmuhamedov EL. 
Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial 
cells. Biomacromolecules. 2007;8:3853-3859 

193. Hunter AC. Molecular hurdles in polyfectin design and mechanistic background 
to polycation induced cytotoxicity. Advanced Drug Delivery Reviews. 
2006;58:1523-1531 

194. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu 
S, Abendschein D, Anderson C, Welch M. Biodegradable dendritic positron-
emitting nanoprobes for the noninvasive imaging of angiogenesis. Proceedings 
of the National Academy of Sciences of the United States of America. 
2009;106:685-690 

195. Boswell C, Eck P, Regino C, Bernardo M, Wong K, Milenic D, Choyke P, 
Brechbiel M. Synthesis, characterization, and biological evaluation of integrin 
αvβ3-targeted pamam dendrimers. Molecular Pharmaceutics. 2008;5:527-539 

196. Pandita D, Santos J, Rodrigues J, Pêgo A, Granja P, Tomás H. Gene delivery 
into mesenchymal stem cells: A biomimetic approach using rgd nanoclusters 
based on poly (amidoamine) dendrimers. Biomacromolecules. 2011;12:472-481 



www.manaraa.com

 123 

197. Feng R, Chen X, Yu Y, Su L, Yu B, Li J, Cai Q, Yan M, Liu B, Zhu Z. Mir-126 
functions as a tumour suppressor in human gastric cancer. Cancer letters. 
2010;298:50-63 

198. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov 
M, Köppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. 
Delivery of microrna-126 by apoptotic bodies induces cxcl12-dependent vascular 
protection. Science Signaling. 2009;2:ra81 

199. Harnprasopwat R, Ha D, Toyoshima T, Lodish H, Tojo A, Kotani A. Alteration of 
processing induced by a single nucleotide polymorphism in pri-mir-126. 
Biochemical and Biophysical Research Communications. 2010;399:117-122 

200. Fish J, Santoro M, Morton S, Yu S, Yeh R, Wythe J, Ivey K. Mir-126 regulates 
angiogenic signaling and vascular integrity. Developmental Cell. 2008;15:272-
284 

201. Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O'Neill SJ, McElvaney NG, 
Greene CM. Mir-126 is downregulated in cystic fibrosis airway epithelial cells and 
regulates tom1 expression. Journal of Immunology. 2010;184:1702-1709 

202. Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal 
modulation by cell adhesion receptors: The role of integrins, cadherins, 
immunoglobulin-cell adhesion molecules, and selectins. Pharmacological 
Reviews. 1998;50:197-263 

203. Aizpurua JM, Ganboa JI, Palomo C, Loinaz I, Oyarbide J, Fernandez X, 
Balentová E, Fratila RM, Jiménez A, Miranda JI, Laso A, Ávila S, Castrillo JL. 
Cyclic rgd β-lactam peptidomimetics induce differential gene expression in 
human endothelial cells. ChemBioChem. 2011;12:401-405 

204. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and drosha for 
endothelial microrna expression and angiogenesis. Circulation research. 
2007;101:59-68 

205. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield 
J, Fox H, Doebele C, Ohtani K. Microrna-92a controls angiogenesis and 
functional recovery of ischemic tissues in mice. Science. 2009;324:1710 

206. Chen Y, Gorski DH. Regulation of angiogenesis through a microrna (mir-130a) 
that down-regulates antiangiogenic homeobox genes gax and hoxa5. Blood. 
2008;111:1217-1226 

207. Anand S, Majeti B, Acevedo L, Murphy E, Mukthavaram R, Scheppke L, Huang 
M, Shields D, Lindquist J, Lapinski P. Microrna-132-mediated loss of p120rasgap 
activates the endothelium to facilitate pathological angiogenesis. Nature 
Medicine. 2010;16:909-914 

208. Caporali A, Emanueli C. Microrna regulation in angiogenesis. Vascular 
Pharmacology. 2011;55:1-8 



www.manaraa.com

 124 

209. Zhu H, Fan G-C. Extracellular/circulating micrornas and their potential role in 
cardiovascular disease. American Journal of Cardiovascular Disease. 
2011;1:138-149 

210. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, 
Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection 
of ischemic heart by akt-modified mesenchymal stem cells. Nat Med. 
2005;11:367-368 

211. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, 
Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for akt-
modified mesenchymal stem cell-mediated cardiac protection and functional 
improvement. FASEB journal : official publication of the Federation of American 
Societies for Experimental Biology. 2006;20:661-669 

212. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell 
signaling and therapy. Circ Res. 2008;103:1204-1219 

213. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov 
M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. 
Delivery of microrna-126 by apoptotic bodies induces cxcl12-dependent vascular 
protection. Sci Signal. 2009;2:ra81 

214. Li X, Arslan F, Ren Y, Adav SS, Poh KK, Sorokin V, Lee CN, de Kleijn D, Lim SK, 
Sze SK. Metabolic adaptation to a disruption in oxygen supply during myocardial 
ischemia and reperfusion is underpinned by temporal and quantitative changes in 
the cardiac proteome. Journal of proteome research. 2012;11:2331-2346 

215. Scheurer SB, Rybak JN, Rosli C, Neri D, Elia G. Modulation of gene expression 
by hypoxia in human umbilical cord vein endothelial cells: A transcriptomic and 
proteomic study. Proteomics. 2004;4:1737-1760 

216. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 
21-nucleotide rnas mediate rna interference in cultured mammalian cells. Nature. 
2001;411:494-498 

217. Mittelbrunn M, Sanchez-Madrid F. Intercellular communication: Diverse 
structures for exchange of genetic information. Nature reviews. Molecular cell 
biology. 2012;13:328-335 

218. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ. 
Comparison of ultracentrifugation, density gradient separation, and 
immunoaffinity capture methods for isolating human colon cancer cell line 
lim1863-derived exosomes. Methods. 2012;56:293-304 

219. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-
mediated transfer of mrnas and micrornas is a novel mechanism of genetic 
exchange between cells. Nat Cell Biol. 2007;9:654-659 



www.manaraa.com

 125 

220. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang 
K. The microrna spectrum in 12 body fluids. Clinical chemistry. 2010;56:1733-
1741 

221. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba 
O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T. Increased microrna-
1 and microrna-133a levels in serum of patients with cardiovascular disease 
indicate myocardial damage. Circulation. Cardiovascular genetics. 2011;4:446-
454 

222. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, 
Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. 
Argonaute2 complexes carry a population of circulating micrornas independent of 
vesicles in human plasma. Proceedings of the National Academy of Sciences of 
the United States of America. 2011;108:5003-5008 

223. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microrna 
biomarkers in plasma and serum using quantitative reverse transcription-pcr (qrt-
pcr). Methods. 2010;50:298-301 

224. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-
Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F. Unidirectional transfer of 
microrna-loaded exosomes from t cells to antigen-presenting cells. Nature 
communications. 2011;2:282 

225. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of 
exosomes from cell culture supernatants and biological fluids. Current protocols 
in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. 2006;Chapter 3:Unit 
3 22 

226. Muller G, Jung C, Straub J, Wied S, Kramer W. Induced release of membrane 
vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored 
microdomain and lipid droplet signalling proteins. Cellular signalling. 
2009;21:324-338 

227. Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, Knowlton AA. Cardiac 
myocyte exosomes: Stability, hsp60, and proteomics. American journal of 
physiology. Heart and circulatory physiology. 2013;304:H954-965 

228. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK. Hypoxic 
tumor cell modulates its microenvironment to enhance angiogenic and metastatic 
potential by secretion of proteins and exosomes. Molecular & cellular 
proteomics : MCP. 2010;9:1085-1099 

229. Schorey JS, Bhatnagar S. Exosome function: From tumor immunology to 
pathogen biology. Traffic. 2008;9:871-881 

230. Fruhbeis C, Frohlich D, Kramer-Albers EM. Emerging roles of exosomes in 
neuron-glia communication. Frontiers in physiology. 2012;3:119 



www.manaraa.com

 126 

231. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van 
Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP. Mesenchymal 
stem cell-derived exosomes increase atp levels, decrease oxidative stress and 
activate pi3k/akt pathway to enhance myocardial viability and prevent adverse 
remodeling after myocardial ischemia/reperfusion injury. Stem cell research. 
2013;10:301-312 

232. Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart 
regeneration. Cell stem cell. 2013;12:689-698 

233. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 
2008;451:937-942 

234. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons 
from the heart. Nature. 2008;453:322-329 

235. Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, Shimizu 
T, Okano T, Kasanuki H, Hagiwara N, Komuro I. Transplantation of cardiac 
progenitor cells ameliorates cardiac dysfunction after myocardial infarction in 
mice. J Clin Invest. 2009;119:2204-2217 

236. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen 
N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, 
Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left 
ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 
2010;121:293-305 

237. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, 
Dimmeler S. Soluble factors released by endothelial progenitor cells promote 
migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell 
Cardiol. 2005;39:733-742 

238. Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, 
Losordo DW, Qin G. Hypoxic preconditioning enhances the benefit of cardiac 
progenitor cell therapy for treatment of myocardial infarction by inducing cxcr4 
expression. Circ Res. 2009;104:1209-1216 

239. Bonauer A, Dimmeler S. The microrna-17-92 cluster: Still a miracle? Cell Cycle. 
2009;8:3866-3873 

240. Mendell JT. Miriad roles for the mir-17-92 cluster in development and disease. 
Cell. 2008;133:217-222 

241. Staszel T, Zapala B, Polus A, Sadakierska-Chudy A, Kiec-Wilk B, Stepien E, 
Wybranska I, Chojnacka M, Dembinska-Kiec A. Role of micrornas in endothelial 
cell pathophysiology. Polskie Archiwum Medycyny Wewnetrznej. 2011;121:361-
366 

242. Zhu H, Fan GC. Role of micrornas in the reperfused myocardium towards post-
infarct remodelling. Cardiovasc Res. 2012;94:284-292 



www.manaraa.com

 127 

243. Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, 
Maurin T, Lebrigand K, Cardinaud B, Hofman V, Fourre S, Magnone V, Ricci JE, 
Pouyssegur J, Gounon P, Hofman P, Barbry P, Mari B. Mir-210 is overexpressed 
in late stages of lung cancer and mediates mitochondrial alterations associated 
with modulation of hif-1 activity. Cell death and differentiation. 2011;18:465-478 

244. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, 
Martelli F, Robbins RC, Wu JC. Microrna-210 as a novel therapy for treatment of 
ischemic heart disease. Circulation. 2010;122:S124-131 

245. Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare 
sentinel lymph nodes for tumor metastasis. Cancer research. 2011;71:3792-3801 

246. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, 
Bruno S, Bussolati B, Camussi G. Endothelial progenitor cell derived 
microvesicles activate an angiogenic program in endothelial cells by a horizontal 
transfer of mrna. Blood. 2007;110:2440-2448 

247. Hill JA, Olson EN. Cardiac plasticity. The New England journal of medicine. 
2008;358:1370-1380 

248. Leask A, Abraham DJ. Tgf-beta signaling and the fibrotic response. FASEB 
journal : official publication of the Federation of American Societies for 
Experimental Biology. 2004;18:816-827 

249. Brigstock DR. Connective tissue growth factor (ccn2, ctgf) and organ fibrosis: 
Lessons from transgenic animals. Journal of cell communication and signaling. 
2010;4:1-4 

250. Liu S, Shi-wen X, Abraham DJ, Leask A. Ccn2 is required for bleomycin-induced 
skin fibrosis in mice. Arthritis and rheumatism. 2011;63:239-246 

251. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, 
Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, 
Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski 
N. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. American journal 
of respiratory and critical care medicine. 2010;182:220-229 

252. Kodama T, Takehara T, Hikita H, Shimizu S, Shigekawa M, Tsunematsu H, Li W, 
Miyagi T, Hosui A, Tatsumi T, Ishida H, Kanto T, Hiramatsu N, Kubota S, 
Takigawa M, Tomimaru Y, Tomokuni A, Nagano H, Doki Y, Mori M, Hayashi N. 
Increases in p53 expression induce ctgf synthesis by mouse and human 
hepatocytes and result in liver fibrosis in mice. J Clin Invest. 2011;121:3343-3356 

253. van Almen GC, Verhesen W, van Leeuwen RE, van de Vrie M, Eurlings C, 
Schellings MW, Swinnen M, Cleutjens JP, van Zandvoort MA, Heymans S, 
Schroen B. Microrna-18 and microrna-19 regulate ctgf and tsp-1 expression in 
age-related heart failure. Aging cell. 2011;10:769-779 

254. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microrna.Org resource: 
Targets and expression. Nucleic acids research. 2008;36:D149-153 



www.manaraa.com

 128 

255. Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, 
Descamps B, Floris I, Sangalli E, Vono R, Faglia E, Specchia C, Pintus G, 
Madeddu P, Emanueli C. Microrna-15a and microrna-16 impair human circulating 
proangiogenic cell functions and are increased in the proangiogenic cells and 
serum of patients with critical limb ischemia. Circ Res. 2013;112:335-346 

256. Ngoh GA, Hamid T, Prabhu SD, Jones SP. O-glcnac signaling attenuates er 
stress-induced cardiomyocyte death. American journal of physiology. Heart and 
circulatory physiology. 2009;297:H1711-1719 

257. Zafir A, Readnower R, Long BW, McCracken J, Aird A, Alvarez A, Cummins TD, 
Li Q, Hill BG, Bhatnagar A, Prabhu SD, Bolli R, Jones SP. Protein o-
glcnacylation is a novel cytoprotective signal in cardiac stem cells. Stem Cells. 
2013;31:765-775 

258. Lee I, Park M, Kim Y, Hwang O, Khang G, Lee D. Ketal containing amphiphilic 
block copolymer micelles as ph-sensitive drug carriers. International journal of 
pharmaceutics. 2013;448:259-266 

259. Liu J, Gu C, Cabigas EB, Pendergrass KD, Brown ME, Luo Y, Davis ME. 
Functionalized dendrimer-based delivery of angiotensin type 1 receptor sirna for 
preserving cardiac function following infarction. Biomaterials. 2013;34:3729-3736 

260. Shenoi RA, Lai BF, Imran ul-haq M, Brooks DE, Kizhakkedathu JN. 
Biodegradable polyglycerols with randomly distributed ketal groups as multi-
functional drug delivery systems. Biomaterials. 2013;34:6068-6081 

261. Shenoi RA, Narayanannair JK, Hamilton JL, Lai BF, Horte S, Kainthan RK, 
Varghese JP, Rajeev KG, Manoharan M, Kizhakkedathu JN. Branched 
multifunctional polyether polyketals: Variation of ketal group structure enables 
unprecedented control over polymer degradation in solution and within cells. 
Journal of the American Chemical Society. 2012;134:14945-14957 

262. Sohn YD, Somasuntharam I, Che PL, Jayswal R, Murthy N, Davis ME, Yoon YS. 
Induction of pluripotency in bone marrow mononuclear cells via polyketal 
nanoparticle-mediated delivery of mature micrornas. Biomaterials. 2013;34:4235-
4241 

263. Somasuntharam I, Boopathy AV, Khan RS, Martinez MD, Brown ME, Murthy N, 
Davis ME. Delivery of nox2-nadph oxidase sirna with polyketal nanoparticles for 
improving cardiac function following myocardial infarction. Biomaterials. 
2013;34:7790-7798 

264. Wang Y, Chang B, Yang W. Ph-sensitive polyketal nanoparticles for drug 
delivery. Journal of nanoscience and nanotechnology. 2012;12:8266-8275 

265. Whiting BT, Coates GW. Synthesis and polymerization of bicyclic ketals: A 
practical route to high-molecular weight polyketals. Journal of the American 
Chemical Society. 2013;135:10974-10977 
 
 



www.manaraa.com

 129 

VITA 

WARREN DALE GRAY 

 
 
 

Originally hailing from Oregon City, OR—the end of the Oregon Trail—Warren’s 

first educational experiences were in music (violin lessons), biology (calf birthing), 

horticulture (flower and vegetable farming), exercise (chasing—and being chased by— 

his siblings) and fear-conquering (egg collection from the chicken coop). In his teens, he 

won baking competitions at the county fair and sang, dance, and acted in numerous high 

school stage productions. At Oregon State University (OSU), he studied chemical 

engineering and took enough gymnastics classes to unofficially minor. At OSU, he 

conducted research under Dr. Joseph McGuire on protein adsorption at interfaces. 

Warren lived for two years in Louisiana, where he served as a missionary for the Church 

of Jesus Christ of Latter-day Saints and was involved in Hurricane Katrina recuperation. 

During his graduate years, he was a student at Georgia Institute of Technology, Emory 

University, and Peking University. Additionally, he took up ballet and swimming, ran 

three 24-hour relay races in Georgia and Tennesse, and hiked on the Appalachian Trail, 

in the Great Smoky Mountains, and along the Blue Ridge Parkway. In China, he 

searched for the best kung pao chicken and managed with (very) broken Mandarin.  

Warren and his wife, Whitney, expect to live a life full of adventures. 

 


